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1.0 INTRODUCTION

The purpose of this document is twofold:

(1) To present a narrative description of the IM/AGS flight ecuations as

presented in Reference 1 and modified by Reference 2.

(2) To present derivations that are not obvious and additional insight into

various portions of the guidance equations.

This document is designed to complement the equation documents (References 1 and 2)

and is for information purposes only. There is no plan to update the document for

each mission.

The document is basically composed of two parts:

(1) A general narrative description where technical details are kept at a

(2)

minimum and only logic flow and minor technical points are discussed.
This section also contains a functional block diagram of the computer
showing inputs and outputs and a description of the coelliptic sequence

of maneuvers.

A detailed discussion of various portions of the guidance equations
along with derivations of the equations where appropriate. A small
section on orbital mechanics is presented in the Appendix so that the
derivations will be as self contained as possible. For deeper insight

into these areas a list of references has been prepared.
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PART I
NARRATIVE DESCRIPTION

2.0 MISSION DESCRIPTION
The mission for which the flight equations are designed is the coelliptic

rendezvous of the IM with the CSM, with abort initiation possible at any time
after separation of the IM from the CSM. To illustrate all the various men-
euvers required, Figure 2.1 shows a coelliptic rendezvous flight profile with

abort from the lunar surface.

A - LEM ORBIT

B - CSM ORBIT
RENDEZVOUS ,

TPI

INSERTION

MIDCOURSE
CORRECTION

Figure 2.1

Coelliptic Rendezvous Flight Profile
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The CSM is in a circular ortit at arn altitude of about 80 n mi. The orbit in-
sertion maneuver is targeted to drive the IM to a desired altitude, altitude rate
and horizontal velocity with zero crossplane velocity. The IM then coasts until
absolute time t,

igp’
insertion. At that point the Coelliptic Sequence Initiate (CSI) burn is performed.

wnich brings the IM about 90 deg around the orbit from orbit

The magnitude of this CGI burn is determined by an iterative technique whereby
trial values of the horizontal burn magnitude are assumed and a resultant error
function evaluated. The error function is the difference between the desired
central angle difference between the IM and the CSM at the desired time of direct
transfer and the computed difference that would be achieved using the trial value
of the horizontal velocity. OSuccessive values of the CSI burn are chosen to drive
the error function to zero.

The coelliptic (CDH) burn is performed at the predicted time of the IM orbit
apofocus (or perifocus). The magnitide of this burn makes the IM orbit coelliptic
with the CGM orbit. ‘

The Terminal rhase Initiate (TPI) turn is performed at the time the desired
line of sight (eLOS) between the [M and the C3M is achieved. The transfer time is
specified, and the rendezvous point is the predicted position of the CSM (or offset
from it). By means of an iteration on the semi-latus rectum (p) of the transfer
orbit, the orbit which passes from tlie present position to the rendezvous position
in the specified time is determined. Once the orbit is determined, the velocity
impulse needed to achieve the desired trajectory is calculated. The midcourse
maneuver is obtained in the same manner.

Aborts may occur anytime after separation of the IM from the C5M. The sequence
of events followed after the abort depends upon the abort situation. That is, if
the abort occurs when the IM is near the lunar surface the above sequence of events
would be desired. If the abort occurs when the IM 1s high above the lunar surface
it may be desirable to begin immediately with the coelliptic sequenée. Finally,
there is always the possibility of doing a direct transfer to rendezvous. This
can te accomplished by utilizing the direct transfer modes available. Built-in
mission planning capabilities are available when these modes are employed. These

capabilities and some restrictions are discussed in Section 6.3.7.5.
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3.0 COMPUTER INPUTS, OQUTPUTS AND OVERALL FUNCTIONAL DIAGRAM
An overall functional block diagram of the IM/AGS is shown in Figure 2.2. Not
all functions displayed on this diagram are considered in this document. Only those

concerning the flight equations are discussed. Those concerning computer operations
such as load and verify routines, telemetry, GSE service routine are not covered in
this document.

The functions of the computer program are sttitude reference, navigation, abort
guidance including attitude commsnds, Engine ON/OFF command and data display. These
functions must be performed based upon the following inputs:
rAQ’xi’ Aayi’ Aazi
Y, Z body axis respectively. These inputs are in the form

- strapped down gyro inputs along IM X,

of pulses and 1 pulse represents an angular increment of

J 2 6 radians.
AGS SENSORS

‘Avxi’ AVyi, AVZi - accelerometer inputs along TM X, Y,
7, body axis respectively. These inputs are in the form

of pulses and 1 pulse represents fps.

=
320

Opi’ wpi, ¢pi - BGNS Euler angles, these inputs are in

PRIMARY -
GUIDANCE the form of pulses and 1 pulse represents 27 x 2 15 rad
AND
NAVIGATION
SYSTEM
I !L’ tL’ Ip YE» tE - FGNS ephemeris data: L signifies
IM, E signifies CSM
f‘
gg - Z body axis direction cosines stored in the computer
when the radar measurement is obtained (Sl5 = 1)
{ R** - Relative range from CSM to IM at the time of taking
RADAR DATA the radar measurement

* %
R - Range rate between CSM and IM
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DISCRETE SIGNALS
from CES autopilot

from Guidance switch
on instrument panel

from 3 state Mode Con-
trol switch on in-
strument panel

from button on
instrument panel

from button on
instrument panel

DEDA <

i

J°,

o %

R

¥

R
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DPS Engine ON (91 = 1) or OFF (el = 0)

{1
o
S’

APS Engine ON (32 = 1) or OFF (82

follow up signal (83 =1);
no follow up (R3 = 0)

auto (eh = 1); Attitude hold or

abort (35 =1)

abort stage (86 =1)

input constants

Ji input and targeting constants

including IM and CSM ephemeris data

radar range rate (fps) input as g7

radar range (n mi) input as J18

\— DEDA Control Switches - see below



DEDA CONTROL SWITCHES

AGS Function Selector (SOO)

aQ —
P00 =

200

So0 =

00
00
00
00
00

2

92}
i

9]
1}

External AV Reference (S

SO7 =

o7

0

- W

~N O\ W

0
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Attitude Hold
Guidance Steering > Inertial Reference Mode

10S Acquisition

IMU Align h
Lunar Align

Body Axis Align
Calibrate

Inflight
Accelerometer
Calibration v

> Align Mode

07)
External AV vector fixed in U,, !l’ El
Sensed velocity increments

local
coordinate frame.

are set to zero.

External AV vector fixed in AGS inertial frame.

Sensed velocity increments are accumulated.

Guidance Mode Selector (Slo)

10
10
10
10
10
10

0O 2 »n 11 \»n wm
"

MWW D e O

Orbit Insertion

CSI Maneuver

CDH Maneuver

Diréct Transfer, astronaut inputs Ty
Direct Transfer, astronaut inputs ti
External AV

gC
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Engine Select (Sll)

5,,=0 Descent Propulsion System (DPS) or Reaction

- Control System (RCS)

5, =1 Ascent Propulsion System (APS)
Inflight Self Test Control (312)

512 =0 reset error indications

812 =1 test successfully completed

512 =3 logic test failure

Sio = L memory test failure

512 =17 logic and memory test failure
Store Landing Azimith and set Lunar Surface Flag (313)

513 =0 No store

S13 =1 Store
Navigation Initialization (Slh)

Slh =0 Initialization complete

Slh =1 Initialize IM and CSM using FGNS data

Slll =2 Initialize CSM using DEDA data
Radar Data (515)

SlS = no radar data

S,c =1 store IM Z axis direction cosines

15
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CDH Apsidal Crossing Selection (316)
Sl6 =0 perform CDH maneuver at first crossing of LM orbit
line of apsides
Sl6 =1 perform CDH maneuver at second crossing of LM orbit
line of apsides
Elliptical or Circular Orbit Logic (317)
Sl7 = 0 elliptical orbit logic
87 = 1 circular (near circular) orbit logic
Altitude rate readout (355)
SSS =0 select altitude rate readout for lunar missions
S55 =1 select altitude rate readout for earth missions

The primary outputs of the IM/AGS are the attitude error signals E. Ey, E, and
the engine OR/OFF signals. In addition many quantities are available for information
via the DEDA and telemetry. Reference 1 contains a short list of these quantities.

The overall list will be presented in the Programmed Equations Document.
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4.0 COORDINATE SYSTEM DEFINITIONS

Prior to lunar landing the moon centered inertial coordinate system used by

the AGS system is defined in the following manner.
The X axis passes from the center of the moon through the nominal
lunar landing site. The Z axis is defined in the downrange direction
parallel to the CSM orbit plane and obtained from the equation |
Ec X 91 where HC is the unit vector pervendicular to CSM orbit plane
and Hl is the unit vector in the direction of the X axis. The third
component is defined in the direction of the cross product of the
above two.
After landing on the moon and prior to liftoff a new coordinate system is es-
tablished which is defined eéxactly as above except that the X axis passes through
the nominal launch site rather than the nominal landing site (inertially different
because of the moons rotation). If an inflight align is performed the coordinates
may be oriented in any orthonormal manner so long as the XZ inertial plane lies
within 80° of the IM orbit plane. Reasons for this restriction are discussed in
Section 6.3.7.5.1.

The IM vehicle body axes denoted by Eb’ zb’ gb are oriented as shown on
Figure 2.3. The direction of the arrows about the vehicle body axes unit vectors
indicate positive angular rate (P,Q,R) and displacement (wx, Vys az). The
direction of the arrows along the axes indicates the direction of positive trans-

v

lational acceleration and velocity (V Zb).

Xb)v ’
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Figure 2.3

Vehicle Reference Axes
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5.0 COMPUTATIONAL CYCLES
The LM/AGS major computational cycle is 2 sec in duration. In this period of

time, the equations update navigation, solve the rendezvous guidance problem, perform
inflight self test, and if requested, align the inertial frame of reference. This
major 2 sec cycle is broken into 100 segments. Each segment takes 20 msec of time

to complete.

Fvery 20-msec segment is divided into two parts, The first portion of the 20 msec
segment contains equations called"20 msec computations'which must be calculated anew
every 20 msec. The second portion of the 20 msec time segment is reserved for the
calculation of either of two different sets of equations.

One set of equations must be completely recalculated every kO mgec. This set
is called the"hO msec computations. This name is not to be construed to mean that
the calculations take 40 msec to complete; they actually take only about 5 msec.

This set of equations is recalculated in the second part of every other 20 msec
time segment, thus assuring that this set of equations is recalculated every L0 msec.

The other set of equations must be newly calculated every two sec. These
equations are called the"2 sec computations; and are too large to fit into the second
portion of the 20 msec time segment. Because of this fact, the 2 sec computations
are split into smaller groups of equations. Each group of equations is small enough
to be calculated in one of the remaining 50 parts of the 20 msec time segment.

The diagram below illustrates the segmentation of the major two sec computational

cycle.

20 msec
computations
2 sec
computations
20 msec
computations
40 msec
computations
20 msec
computations

2 sec
computations

N v \m PER J [ v ’

20 msec 20 r;uec 20 trxvsec 20 mv-ec
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5.1 Timing of the Flight Equation Computations

In the equation flow diagrams of Reference 2, the 20 msec computations, the 40
msec computations, and the 2 sec computations are shown in separate diagrams. Unless
otherwise indicated the following figures are those of Reference 2. Figure
3.1 1s a systems diagram of the logic connecting the three sets of computations. The
important decision blocks in Figure 3.1, from the standpoint of the correct inter-
lacing and proper sequencing of the 40 msec computations and the 2 sec computations
are labeled { ensures that the 40 msec computations and the 2 sec computations take
place in alternating basic 20 msec periods. The 2 sec computations are split among
the 50 unused parts. When Cycle B is selected by [, the branch control decision
block routes the program to the proper set of equations.

Figure 3.1 shows only those portions of the logic and the equations which are
hardwired. Included are all of the 20 msec computations, and the L0 msec computations
and only portions of the 2 sec computations, including Branch 50. The remainder of
the 2 sec éomputations will be fitted by the programmer into the remairing unused
portions of every other 20 msec cycle between Branch 3 and Branch 50.

At the conclusion of the computations in a particular branch (except Branch 50),
a dummy variable Q is set to the number of another branch, and then at point (:) of
Figure 3.1, the branch control is set to route the program to this block of equations.
This means that the next time { routes the program to Cycle B, the branch control
switch will route the program to the block of equations selected at the end of the
previous 2 sec computation. An exception to this sequencing is Branch 50. Counter
Y10 counts the number of 2 sec computations. Immediately following the block labeled
Initisl Starting Routine, note that Y is set equal to zero and branch control set
to Branch 50. This ensures that the first branch of the 2 sec computations will be
Branch 50. Branch 50 is unique among the 2 sec computations branches in that the
first thing done in this routine is to set branch control to Branch 1, and pass from
this routine to Branch 1 without going through point (:). Every time point (:)
is passed, the B0 counter is advanced. When Big = 49, branch control is set to 50.
This ensures that no matter what equations of the 2 sec computations are performed
in the major 2 sec cycle, the navigation update equations will always be performed
at equally spaced intervals. The first Branches 1, 2, and 3, the last Branch, 50,
indicate the order which the computations will be performed. As previously stated,

all remaining 2 sec computations must be programmed in Branches L to L49.
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5.2 Basic Block Computation
5.2.1 20-Msec Computations
The most important block in Figure 3.1 from the standpoint of regu-
lating the duration of each basic 20-msec block of computations 18 decision

block [I, which ensures that 20 mseconds of real time have passed before
a new basic 20 msecond cycle begins.
The major classification of equations processed in each of the three
different computational blocks is listed below.
The 20-msecond computations consist of:
(1) Gyro data processing and compensation (corrections)
(2) Accelerometer data processing and compensation
(3) Attitude direction cosine updating
(4) PGNCS downlink data input routine
(5) Telemetry output
(6) IMU or body axis align computations

5.2.2 kO-Msecond Computations

The 40-msecond computations consist of:

(1) Thrust and velocity vector incrementing
(2) Attitude control and engine ON/OFF selection logic
(3) Output AGS attitude error signals
(%) Output AGS main engine commands. Hence, the engine OFF
command has a L4O-msecond timing resolution.
(5) FDAI computations: these are outputs to the astronaut's
attitude indicator on the instrument panel.
(6) TIamar align loop: lunar align is a digital servo loop
nulling attitude error signal, with a sampling period of
4O mseconds.
(7) DEDA and External Discrete sampling (CES, GSE)
(8) Normality and orthogonality corrections for direction
cosines
(9) Decrementing of velocity-to-be-gained to engine shutdown
(10) GSE service routine entrance.



(4)

(5)
(6)
(7)
(8)
(9)
(10)

(11)

(12)
(13)

(1%)
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2 Sec Computations

Decision logic for AGS guidance functioning

Navigation updating from previous 2 sec cycle, i.e., the integration
of velocity and position (detection of ullage)

Initialization of 1M and/or CSM ephemeris, if DEDA or downlink
initialization requested

Calibration using a 2 sec sample data servo loop for nulling gyro
non-g-sensitive drift, when DEDA requested. During inflight calibration,
accelerometer bias is also nulled.

Radar data processing; reestimation of the IM ephemeris

Computatién of landing azimuth on command via DEDA

Computation of orbit insertion

Computation of Coelliptic Sequence Initiate (CSI) burn

Computation of Coelliptic Maneuver, CDH Burn

Selection of best of trial values for CSI burn and CDH burn by
evaluation of the error function

Calculation of direct intercept transfer orbit (TPI) using
p-iteration routine

Computation of an External AV maneuver

Computation of velocity-to-be-gained, V., and desired vehicle

G
thrust direction
Computation of altitude, altitude rate and body Y-axis velocity

every 2 sec and interpolated for output every 200 msec.
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6.0 DESCRIPTION OF FLOW CHARTS

This section contains the narrative description of the flight equations. Unless

otherwise specified all figures mentioned refer to those of Reference 2. The blocks
of equations contained in dashed lines are those programmed in the hardwired memory
of the computer.

6.1 20 Msec Computations

6.1.1 Sensor Input Processing

The 20 msec computations begin on Figure 3.2. At the top of the page a check is
made on 4t to insure that the equations are calculated every 20 msec. PFGNCS Euler
Angles, Gyro Data and Accelerometer Data are picked up and appropriately stored.

The first calculations are to compute the velocity increments over a 20 msec cycle.
The accelerometer data is in the form of pulses and an accumulation of 640 pulses
per 20 msec indicates no acceleration. The equations subtract 640 pulses (1K7) from
the number of pulses accumulated and the remainder is the net pulses around a zero
acceleration. The net number of pulses is then multiplied by the appropriate scale
factor (1K18, 1K20, 1K22) to convert pulses to ft/sec. These scale factors can be
varied according to ASA calibration measurements. In a zero g environment the
accelerometer may not output exactly 640 pulses so this bias is compensated by the
constants 1K19, 1K21, 1K23 for each accelerometer respectively. These numbers are
also obtained and varied during calibration.

Following calculation of the velocity increments a check is made to determine
if the equations are in the inertial reference mode or the align and calibrate mode.
The latter mode is entered if SOO 2 3.

6.1.2 Align or Calibration Mode

If in the align mode the equations determine which specific submode and act
accordingly.
6.1.2.1 IMU Align
If an IMU align is being done (SOO = 3) the logic flow proceeds to the top of
Figure 3.5 (point ) where the direction cosine orthonormality corrections
(El, E3, El3) are zeroed. The FGNCS Euler angle inputs (pulses) are then converted

to radians by the conversion constant 1K25. Operation on these angles yields
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the desired direction cosinesallD, a15p° al3D’ a3lD’ a32D, a33D. The remaining
direction cosines are obtained toward the bottom of the page. Detailed inform~
ation on the IMU align equations is ~ontained in Section T.l.2. The quantities
AaiJ rem’ Aa3J rem’ 9 = 1» 2, 3 are then set equal to zero. These quantities
will be discussed later. Suffice it to say that when any alignment is performed
these equations are zeroed. The logic flow of the equations is then at point
which is the same as if the inertial reference mode had been selected (S00 < 3).
6.1.2.2 Lunar Align

If the lunar align mode has been selected (S00 = ) on Figure 3.2 the logic
flow is to the gyro compensation block. Iunar align is discussed in detail in
Section 7.1.3.

The lunar align mode mechanized in the IM AGS is the backup alignment system in
case the FGNCS is inoperable after the IM has successfully landed on the lunar surface.
If the FGNCS is operating, the lunar alignment is performed by going into the IMU
align equations.

Basicélly the lunar align equations compute the [A] transformation matrix
(matrix of body axis cosines) which relates the vehicle body axes to the computational
inertial reference system, so that the X, Y, Z computational inertial frame coincides
with a selenocentric coordinate frame. This selenocentric coordinate system is de-
fined with the X axis along the lunar local vertical positive outward from the lunar
center, with the Z axis direction conceptually obtained by crossing the unit angular
momentum vector of the CSM orbit with a unit vector along the X axis. The lunar align
equations mechanize a low gain filter to compute the desired [A] matrix from the com-
pensated accelerometer output for leveling and an azimuth reference update constant
GA for the azimuth reference. These equations are computed in the 40O msec com-
putational cycle and are shown on Figure 3.8. Detailed discussion of the equations
is presented in Section 7.1.3.

For lunar align to function properly the direction cosines must have been stored
soon after IM touchdown on the lunar surface by the setting of S13 = 1.

6.1.2.3 Body Axis Align

If the body axis align mode (SOo = 5) has been selected the logic flow is to

point (::) on Figure 3.5 where the direction cosines are initialized as

a;, = a33 =1, a1, = 313 = a3l = a,, = O. The remaining direction cosines are com-
puted from these near the bottom of the pege. This alignment procedure forces the X
inertial axis to lie along the X body axis, the Y inertial axis to lie along the Y
body axis and the Z inertial axis to lie along the Z body axis. This alignment must
be constrained that the XZ inertial plane lies within 80° of the IM orbit plane. De-
tailed discussion of the mode is contained in Section 7.1l.1. The logic flow again

arrives at point of Figure 3.5.
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6.1.2.4 Calibration Submodes
If the equations are in a calibrate mode (SOO = 6,7) then the lunar surface flag

6,5, 18 checked to see if the IM is on the lunar surface (621 = 1) or in flight

(621
of equations and as in the inertial reference mode to point on Figure 3.5. The

actual calibration equations and techniques are discussed in Section 7.2 of this

= 0). In either event the logic flow arrives at the gyro compensation block

report. should NOT be set to 7 when on the lunar surface.

500
6.1.3 Inertial Reference Mode

If the equations are in the inertial reference mode the logic flow is to the gyro
compensation block at the bottom of Figure 3.2. The purpose of these equations is to

obtain compensated values of the gyro inputs. 1In order to achieve greater accuracy in

the equations a form of double precision is used in these calculations. For con-
venience, the following discussion is concerned with the X axis gyro. The equations are
similar for the other axis except as noted below.

The double precision operates as follows. The quantity Aw rem is calculated at
a quantization level of 2730, calculating Av (the compensa:ed incremented com-

ponent of rotation about the X body axis) only that part of Aax rem that exceeds 2-16

is used. This part is denoted by b 16. Then Aax rem is recomputed for

x rem|z 2~
16. Thus the part of Aax

use in the next computing cycle as Aax rem - Aax remlz o~

not used in the present cycle is retained for use in the next cycle. The three

rem

equations under discussion are

1 1
R by rem * K1t K;K3 (Aaxi - K%) * Kih Avx

1 1
by = K (B = K)o+ Boy + A ren|> 2716

Aoy = Ay 6

X rem x rem ~ ¥x rem|2 271

These equations do the following: The raw X axis gyro output (Aaxi) is received
in the form of pulses. In any given 20 msec computing increment a zero angular incre-
ment would be indicated by reception of 64O pulses (x%). Thus a negative angular in-
crement would be detected if less than 640 pulses were received per 20 msec and a posi-
tive angular increment if more than 640 pulses per 20 msec were received. Multiplication
of (Aaxi - K%) by the constant 1K2 converts the pulse count to radians. Multiplication
of the angular increment 1K2 (Aaxi - K%) by the constant 1K3 forms a correction for the
attitude rate scale factor error of the X gyro. This quantity has added to it the
gyro drift compensation constant 1K1 and the quantity 1K1i (Avx). This latter term is
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the correction for X spin axis mass unbalance. This correction term is required because
an imperfect gyro when accelerated will give indications that the attitude is changing

even when it is not. Terms such as this do not appear in the Y or Z gyro equations

because error analyses have indicated them to be unnecessary. Aax rem is then formed

as the summation of all the terms just discussed and that part of Aax rem of the previous
computation cycle that did not exceed 2'16 radians. Note that Aax rem appears as a
summation of correction terms to the yaw gyro input. To obtain the compensated gyro

input used in the navigation eauations (Ao ), the part of Aa p that exceeds 2-16 radians
is added to the raw gyro input converted to radians [K (Aa Kﬁ)] In addition the
alignment error AaxA is added. This last term is used when a lunar align is being per-

formed and is zeroed when any other mode is entered. Following this calculation the
Aax rem term is set up for the next computing cycle by subtracting from Aa rem that
part of Ao/x rem greater than 2 16. The flow logic then proceeds to on Figure 3.3.

On Figure 3.3 a check is made on the magnitude of the angular increments per 20
msec to determine the desired scaling on various quantities. Scaling at 2-9 is neces-
sary to gain precision in updating the direction cosines. Scaling at 2-6 is necessary
to obtain the required dynamic range of rotation about each axis (125°/sec). Switch-
over of the scaling occurs at approximately S°/sec. The IM usually rotates at a fate
less than 5°/sec so that the desired precision is obtained. The logic flow then
proceeds to on Figure 3.k4.

Figure 3.4 contains the equations to update six of the nine direction cosines based
upon the compensated gyro inputs as just discussed. Error terms (El’ E3, E13) are used
appropriately to keep the direction cosines orthonormal. In addition direction cosine
remainder terms are added to improve the computational accuracy due to the higher
El’ E2 and E13 are then set to zero.

Regardless of the mode of the equations (Figure 3.2) all logical paths arrive at
the point on Figure 3.5. Here the remaining direction cosines 8,15 8,59 a23

calculated from 8417 815 a, 13’ 331’ a32, a33 which were evaluated previously in a manner

scaling used on Figure 3.3.

depending upon the mode of the equations. With these direction cosines the velocity in-
crements obtained along IM body axis (from the accelerometers that are mounted on the
body axis) are transformed to X,Y,Z inertial coordinates. These velocity increments

are denoted by Asz, AVys, Ast respectively. This group of equations.are the last
computed in the 20 msec subcycle. At the bottom of Figure 3.5 the decision is made

to proceed to the 40 msec computations or to the 2 second computations. These paths

are alternately selected.
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6.2 4O Msec Computations

6.2.1 Updating Accumulated Velocity and Calculation of Velocity-to-be-Gaiqgg

At the beginning of the 40 msec subcycle the components of the vectors Yd and Q!E
are computed. A discussion of these quantities and several associated quantities is

now presented. Appropriate definitions are:

Yd is the accumulated velocity vector updated every 40O msec
vy is the accumulated velocity vector which is updated (set equal to
2 ond
!d) every 2 seconds
!G is the remaining velocity to be gained vector (computed every 2 seconds )
Yg is the total velocity that must be gained and equals the sum of the

velocity already gained !D and the remeining velocity to be gained YG
This quantity is calculated every 2 seconds.

ng is the velocity to be gained vector that is updated every 40 msec and

e
The following chart shows the relationship between these quantities. For simplicity

is computed as V. =~ V..
1

the quantities that are updated every 40 msec are depicted as being updated con-
tinuously. Also for simplicity the vector notation on the quantities is dropped.

VE
e s V
v v - G° D
~ G d 7 v
A // ------- d
g z AV
velocity _ ~ e ——— — g
(fps) S<
N
i ~N
-
rd
v
// D
-
”
4 ) A & 8 1b
Time Engine Cutoff

FIGURE 2.4
Accumulated Velocity and Velocity-to-be-Gained Diagram
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The juantities are calculated this way so that the engine may be shut off based
uron current informption (AV ) rather than informrtion that may be up to two seconds
old (v'). Note that since !D should increase by the same amount thet !G decresses
every two seconds the quantity V_remmins constant. Thus, the velocity remeining

to be gained (calculated esch 4O msec) is readily computed eas

s

velocity to-be- constant velocity already gained
g ined updated every 40 msec
tn the first block on Figure 3.6, the quentity de (for exemple) is computed as
= + AV + AV
de de Xx,Nn Xyn=L

which in words mesns: set the x component of velocity mlrendy grined equal to that
gained up to W0 msec ago plus the velocity grined in the latest 20 msec computing
cycle plus the velocity grined in the second previous 20 msec cycle.

6.:.1 Estnblishing Vehicle Status

Following these calculations, the status of the B discretes is checked.

Every 40 msec the B discretes are examined to determine the approprimate mode of
oreration for the computer.

Several checks are made to determine the status of the IM vehicle. These
checks siscertain whether the descent section has been staged or whether the vehicle
is on the lunsr surface. The first check is on the 62 fleg which is equal to one if
the descent section has been staged. If the 62 flag has not been set to 1, then the
32 discrete is checked to see 1If the ascent engine 1is on @32 = 1). If the ascent
engine is not on, then the status of the vehicle is assumed to be the same as in
the previous 4O msec cycle. However, if the ascent engine 1s on, then 6 is set
to 1, meaning the descent section has staged and 6£1 1s set to 0, meaning the IM
is not on the surface of the Moon. OO 1s set to 1 so that the vehicle goes into
a guidance steering mode of operation. This is done for the following reason.

Prior to lift-off from the lunar surface, a lunar align may be performed. It is

desirable to perform this align until nominal 1liftoff time. Thus, instead of making

the astronsut take the equations out of the lunar align mode (switch 5, from b to 1)

it is done automatically. This is also a safeguard against an undesirable

engine cutoff since the equations commend engine OFF (explained below) when S 4 1.
The remainder of the flow in the 40 msec subcycle is functionally displayed in

Figure 2.4 (this document). This diagram is very useful for considering the result
of various switch settings.
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Regardless of the logic flow path Just taken, a check is made on SOO to see
if the system is in an inertial referencg mode (SOO < 3) or in the align and
calibrate mode (SOO > 3). If in the align and calibrate mode, zero attitude
errors are output. If the specific mode is lunar align (SOO = 4) a check is
made on B_ (abort stage). If an abort stage is occurring, the equations switch

5
out of the lunar align mode by setting S.. to 1 and go to the attitude hold

00

equations. If BS = 0, the logic flow proceeds to Figure 3.8 where the lunar

align calculations are done. The logic flow then proceeds to point (::) on
Figure 3.7 where the engine discrete is set to OFF. (::) is also the point to
which the logic flow proceeds if any of the other align or calibrate modes are

operating. The check of S.. against 4 at the bottom center of Figure 3.6 deter-

00
mines which of the above paths are taken.
6.2.3 Steering Modes

Prior to discussing the logic in the center of Figure 3.6, the various

steering modes are considered. The result of all steering mode calculations are
att;tude errors about the IM body axes denoted by Ex’ Ey and Ez' Derivation of
the equations for these three quantities (in the various steering modes) is con-
tained in Section 7.4.1 of this report. A general description of the equations
is given here.
6.2.3.1 Attitude Hold
The object of the "attitude hold" equations is to generate steering

commands such that the vehicle maintains the inertial attitude existing when

the attitude hold mode is first entered. This is done by utilizing the 65 check

at the top center of Figure 3.6. When the attitude hold mode is first entered,

65 equals zero. This causes the desired pointing directions X, and Z, to be
established as the present pointing direction of the vehicle §b and gb respectively.
In addition, the flag 65 is set equal to 1 so that in the future the operations of
setting ED = Zb and gD = %b are bypassed. The attitude error signals are then

computed as

Ey=-4 g
=% 5
E,= L0 %

which are all zero the first time through the attitude hold computations.
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6.2.3.2 Guidance Steering
The object of the "guidance steering” mode of attitude control is to orient the

IM thrust vector along the desired thrust vector. The IM thrust vector is actually
oriented differently depending upon which engines are being used. The RCS engines
are mounted along the body axes so that if thrusting is done with the X axis thruster
the thrust vector will be along the X body axis. If the DPS engine is being used

the thrust vector is again along the positive X body axis. However, if the APS
engine is used the thrust vector is displaced from the IM positive X body axis by
approximatcly 5 degrees downward (toward the positive Z body axis) in pitch and

2 degrees toward the positive Y body axis in yaw. Thus, steering commands must be
generated depending upon which engine is used. These equations are derived in

Section 7.4.1 and are

=
]

x= "W
Ey =" gb ) KbD
e " %
when the DPS or RCS engines are used. These equations appear at the bottom of Figure

3.6 following the logic path S.. = O and 82 = 0. They appear slightly different there

11
but are equivalent to those above. For example, E 1is calculated as

Ey:Ey-(gb'_)gD)
which in words means, "put into cell Ey the previous value of Ey minus the value
éb . ED”. The previous value of Ey is zero (set to zero at the top left center of
Figure 3.6) and KD = EbD so that the resultant value of Ey is

Ey = éb ) KbD
These equations drive the positive X body axis to the desired thrust direction and the

positive 7 body axis perpendicular to the angular momentum vector of the CSM orbit

pointing toward the lunar surface (down).
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If the APS engine is used the attitude error equations are (following the

path of 5,, = lor 8, = 1) .

x= ¥ G -
y Kl;h()—(b " %) - (& 0 Xp)
.= Kg (X, * Xp) v (% 7 Xp)

In the equation for Ex the DEDA input constant has been added to allow S band com-

=
i

=1
n

=
n

munication during the orbit insertion phase of the lunar mission regardless of the
landing site chosen. a* is entered in degrees and should be limited to less than 40°
due to accuracy limitations. A positive value of Jl‘L will drive the positive IM Z
body axis toward the negative CSM angular momentum vector. Care should be exercised
in using this parameter if the desired thrust direction of the IM is nearly colinear
with the CSM angular momentum vector. In this situation the attitude error equations
(for nonzero values of Ju) will try to drive the 7 body axic to a physically un-
realizable position thus causing the vehicle to continuously roll about the X body
axis. If this situation occurs at all it probably would be in the final phase of
the mission where a value of Ju = 0 should be utilized.

The logic check on the switch 3,, followed by the check on 82 at the bottom of

11
Figure 3.6 appears at first glance to be redundant since Sll should be switched to 1
when the APS engines are used (92 = 1). This logic has been inserted because 82 is O

until the APS engine is turned on at which time it is set to 1. Thus up until this
time the desired steering would not consider the canted engine. In order to over-

come this the switch Sll has been inserted so that the correct steering will be done

prior to the initiation of the APS burn. For long APS burns the insertion of the

Sll switch would not be necessary; however for short duration burns inclusion of

this switch is mandatory.
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6.2.3.3 Acquisition Steering

The purpose of the "acquisition steering" mode (SOo = 2) of attitude control is
to point the positive Z body axis of the IM in the computed direction of the CSM. This

mode is used prior to taking radar data. The error equations are computed as

B - ¥ %

By =X Gy

Ee=-4 - Zop
where ébD is the desired pointing direction of the IM Z body axis. In this mode then,
the Z axis is oriented in the direction of the CSM and the X body axis is oriented

perpendicular to the angular momentum vector of the CSM. If the CSM is ahead of the
IM the X body axis will be above the local IM horizontal plane and if the CSM is
behind the IM the X body axis will be below the local horizontal plane.

6.2.4 Steering Mode Decision Logic

The remainder of the logic in Figure 3.6 is now considered. At the upper left hand
side of the page the follow-up flag 83 is checked. Consider the situation where Q3 = 0.
A check is then made on the "Auto" discrete Ae If 2, =0 (attitude hold) the flag

620 is set equal to 1 and the attitude hold equations are then computed. 620 is used

on Figure 3.7 to control the logic flow. The result of 620 being set equal to 1
maintains the Engine ON/OFF discrete in the status determined by 81 or Q2' That is,
if either Rl or 82 equals 1 the engine discrete is set ON, if not then the engine

discrete is set OFF.

Back on Figure 3.6 if the Bu flag equals 1 (rather than O as Just discussed) then
the "abort stage" discrete 85 is checked. Consider first the case where no abort stage
is commanded (85 = 0). Immediately following this the lunar surface flag 6, is
checked. If on the lunar surface (621 = 1) zero attitude errors are sent to the auto-
pilot and the logic flow proceeds to point (::) on Figure 3.7 where again the engine
discrete is determined by the status of Rl and 82. If not on the lunar surface
(621 = 0) the abort discrete (56) is checked. If B, = O then again b, 18 set to 1
and the logic flow proceeds to attitude hold. If the abort discrete is 1 then either
attitude hold, guidance steering or acquisition steering is done depending upon the

a
setting of S00°
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‘The only other alternative remaining is if nn nabort stage command, i.e.,

B = 1. This appears in the center of Figure 3.6. If the IM is on the lunar sur-
r;ce, 300 is set to 1 and the logic flow is to the attitude hold equations. This
came logic flow repeats every 4O msec until the "staging recognition and remove
Lunar surface sign:l" logic on the left-hand side of Figure 3.6 18 exercised as
discussed above. That is, when the ascent engine comes on (32 = 1), 521 is set

to zero so thst following the 65 = 1 check at the center of the page, the check on
521 now sends the logic flow downward towsrd the 92 check. Since 82 was set to 1,
the logic flow proceeds to the u, counter check. e 1s incremented by L every 40
msec. The vehicle stays in attitude hold until e exceeds 4K32 at which time the
logic flow proceeds to the guldance steering equations. If the abort stage had been
set in flight with the ascent engine off (ﬂa = 0), then the Ue logic would be by-
iussed (until 32 = 1) and the nominal guidance steering continued. The purpose of |
the e logic is to allow the vehicle to automstically be in attitude hold as the
vehicle lifts off the lunar surface and during staging. After a prescribed amount
of time (controlled by 4K3¢), the vehicle will orient to the attitude defined by

the guidance steering equations.

Consider now again the check on 83. In this instance, let the AGS be in follow-~
up (93 =1). If Bh = Ovﬁaltitude hold), then the attitude errors are zeroed and the
logic flow proceeds to (Eé) on Figure 3.7. If Bh =1 (auto), then 820 is set to 1
and the #uttitude errors are computed for display purposes. These error signals are
inhibited by the autopilot so that the vehicle will not act on them but they may be
used for display purposes.

6.2.5 Engine ON/OFF lLogic

As already indicated, there are four exits from Figure 3.6. These have all been
discussed above with the exception of the exit to @) when 820 is zero. appears
on Figure 3.7. If &, is zero and the mode of the computer (SOO) is not in "guidance

2
steering”, then the engine is commanded OFF. If, hovever; s

00 - 1 (guidance steering)
a series of checks are made to determine the proper status of the engine discretes.
First, the ullage counter is checked. If this counter has not accumulated to the
value 1K9, the engine discrete is set OFF. If ug 2 1K9, then a check is made on the
velocity-to-be-gained in the X body direction. If this (as computed every 40 msec)

is greater than the value 4K25 (engine shutdown impulse), the engine discrete is set

ON. If less than K25, a check on total velocity-to-be-gained is mmde against LK26.
The total velocity-to-be-gained is here denoted by AVb. This is a dummy variable set
equal to VG near the end of each 2 second computing increment. If AVG 2 4Ko6,

the engine discrete is set ON. If less than 4K26, the attitude
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hold mode is entered, Sll is set to zero, the ullape counter is reset to ‘ero snd
the engine discrete is set to OFF. The attitude hold mode of ojeration Is entered
prior to engine OFF because the residual VC vector could point in smny direction and
1t 1s not desirable for the vehicle X body axis to try to point in this srbitrary
direction.

The value of 4K26 has been tentatively set at 100. The reason for the check of
A“Gagainst 4K26 is to guard against the situation (that may occur in #n abort) when
the vehicle attitude is poorly oriented and the velocity-to-be-gained is large. In
this case AVéx (the quantity that is used to actually shut off the engine) could be
negative yet the desired condition is for the engine to be ON. The check of AVC
against 4K26 insures that the desired conditions are obtained.

The remsinder of Figure 3.7 s to do with outputting DEDA words and generating
quantities El’ E3, El3° These three terms are used for the orthonormel corrections
to the direction cosine matrix as derived in Section 7.3.1 of this report. The
remeinder of the 4O mgec computations are done on Figure 3.9 where sin rv, COS rv,

sin v, coé v are computed for the FDAI and sent to the D/A converter.
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6.3 Two Second Computations

The equations utilized in the 2 second computation interval are selected by
the logic on Figure 3.27 called the "Executive Branch". The selection of equations
depends primarily upon switch Slh which has the following settings.

Initialization Complete

Initialize IM and CSM via Dowmlink

Sy =
2 Initialize IM via DEDA

3 Initialize CSM via DEDA

If the switch setting for Slh is either O or 3 the equations utilized in the 2
second computations are those beginning on Figure 3.12. This is the usual mode of
operation. If however, Slh is 1 or 2 then only the equations that appear on Figures
3.10 and 3.11 are solved in the 2 second cycle. In other words no guidance com-
putations are done in the 2 second computation interval when Slu is either 1 or 2.

Prior to discussing the initialization equations it 1is appropriate to explain
the navigation techniques for the CSM and IM.

6.3.1 CSM Navigation
The CSM position and velocity at any time is determined by utilization of a

subroutine called the "Ellipse Predictor". This subroutine (explained in math-
ematical detail in Section 7.4.2 of this report) has the capablility of accepting
position and velocity of a vehicle at any time, say tE’ and determining the position
and velocity of the vehicle at any other time, say tE + Ti' Here Ti can be either

a positive or negative number. The prediction of position and velocity is based
upon the assumption that the acceleration due to gravity i1s of the form k/r2 where

k is a constant and r is the distance from the center of the attracting body. This
form of the gravity model will hereafter be called "spherical”. For the CSM,
ephemeris information in the form of T YE and tE is stored in the computer. Here
E and !& is the CSM velocity vector
E° Thus, if it 1s desired to know the position and velocity

of the CSM at say the present time t then the CSM position £E and velocity YE

Tw is the CSM position vector at the epoch time t

at the epoch time t

are
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input to the "ellipse predictor" subroutine along with the time interval
tb =t - tE. The output of the ellipse predictor is then called Te and !c’ the
position and velocity of the CSM at time t. Note that the epoch point is not up-
dated to the present time but rather that the original values of Ty XE and tE
are maintained. The only time the epoch point for the CSM is changed is when new
ephemeris data is obtained via downlink or DEDA or when the epoch point is greater
than 1 orbit old. In that case the epoch position and velocity 1is updated (boot-
strapped, Figure 3.13) one full orbital period. This is done so that the quantity
time does not exceed the computer scaling.

6.3.2 1M Navigation

The "ellipse predictor" subroutine as discussed above does not take into

account any acceleration of the vehicle other than that due to "spherical" gravity.
Thus the technique used for CSM navigation is not valid for IM navigation since
the IM vehicle goes through various thrusting phases. IM navigation 1s done by
integrating the equations of motion of the vehicle in a central force field. In
this way external accelerations (other than gravity) can be entered when appropriate.
The only time the ellipse predictor subroutine is used for IM navigation is when
new IM ephemeris data is obtained and this data must be updated to the present
time. Of course for the updating to be valid no IM thrust acceleration can occur
between the time of the ephemeris point and the present time.
6.3.3 Navigation Initialization

Reference is made to Figure 3.10. If Slh is 1 then a CSM and IM ephemeris

update is to be performed utilizing information obtained from the IGC downlink

via DSKY command. This information is converted to the correct format and stored
in the DEDA cells. The quantity t (to be discussed below) is set to zero. If
Slh = 2 then the IM ephemeris is to be updated via DEDA inputs in the form of
constants 1J1 thru 1J7. No new CSM data is obtained at this time.

Slh 1s automatically set to zero so that in the next 2 second computing in-
crement the normal guidance equations will be utilized. Also the present time,
t, is incremented by 2 seconds. The following quantities are obtained for the IM
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orbit from the "orbit parameters subroutine" that appears on Figure 3.15. This

subroutine computes orbital elements from equations described in Appendix A of this

document.
r - distance of IM from the center of moon
o - semi major axis of IM orbit
T - IM mean orbital rate
C - product of IM eccentricity and cosine of eccentric anomaly
S - product of IM eccentricity and sine of eccentric anomaly

Definition of these terms is contained in Appendix A.

Figure 3.11 indicates how the IM ephemeris data is updated to the present time.
First the quantity Ti is calculated which is the time increment from when the
data was valid to the present time. If the vehicle is on the lunar surface (621 =1)
then the position vector is updated simply as
' r=r + VT

ARNA

If, however, & is O then the present position and velocity of the IM is obtained

via the ellipsilpredictor as indicated previously. Following these updating cal-
culations several quantities are calculated for use in the next 2 sec computing
increment.

This completes the initialization routine and no additional computations are
done in the present 2 sec computing increment.

6.3.4 Navigation Equations Description

If Slh is neither 1 nor 2 then the two second computations begin on Figure 3.12.
The purpose of the equations on this page is to obtain the IM position and velocity
based upon the sensed accelerometer AV's and attitude, accumilated during the 20
mgec computation cycles.

If the IM is on the lunar surface (62l = 1) the accumulated velocities (!d)
and the gravity integral AIG are set equal to zero and the "navigation update"
equations entered. If not on the lunar surface, thrust acceleration is
obtained by differencing accumilated velocity along the X body axis this cycle
with that 2 seconds ago and dividing by 2. As explained above de is
the accumlated thrust velocity along the X body axis valid at the
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present time and V is that valid 2 seconds in the past. The thrust acceleration,

aq, is checked agali)zst constant 4K35 (.1 fpsg). If &y 2 4K35, the ullage counter (”‘8)
is increased by 1. If ap < 4LK35 the ullage counter (u8) is set to zero. AV is the
sum of the absolute values of the components of sensed velocity during the 2 sec
computaticn interval and is checked against the constant 1K35. If Avg < 1K35 it
is assumed that no thrusting has occurred and the accumlated sensed velocities
(accelerometer biases) are set to zero. Moreover V4 is set equal to V.

The first equation in the group of equations marked "Navigation Update' on
Figure 3.12 pertains only to the "external AV" guidance mode of operation and will
be discussed completely below. Suffice it here to note that.Qgs is the accumulated
thrust velocity in inertial coordinates and the equation updates the value every 2

seconds. KD is set equal to for use in the calculation of an in the next 2 sec

\J
|
cemput ing increment. Next the IM veloclity vector is updated to the present time by
the relation

X=X+AIG+-A—VS

where again AV, is the accumulated sensed velocity in inertial coordinates over the
last two seconds and the termlégg takes into account the effect of gravity on
velocity. AIG is equal to 2 (since 2 sec is the computing increment) times the
average value of acceleration due to gravity in the previous computing cycle which

1s assumed to be the value of acceleration one second ago. Pictorially

Assume to be average value

G G;-\\\\\\\\‘\
n-1 ‘*1$*
Acceleration
due to
gravity g
n-1 n now
1 sec '
AN ~ /. _/
2 sec 2 sec
FIGURE 2.6

EVALUATION OF GRAVITY VECTOR



05952-6076-T000
Page 33

X 1 ‘
Thus the average value of G is computed to be [En + 5 (gn - gn-l)]' When this is

multiplied by 2 sec to obtain velocity the expression

86 = 35, - G,

is obtained. The vector value of G is obtained by the expression

R * 1
G=--3 2%
r T
r
where U1 is the radial unit wvector T of the IM.

The value of the IM position vector is updated by taking the old position vector
and adding to it 2 times the average value of the velocity vector during the previous
two seconds. Thus

5=r+2[ _1] R AR A
Following these computations ¥ is calculated for later guidance purposes and ﬁ is
calculated for display purposes. In addition time is incremented by 2 seconds.
The logic flow then proceeds to Figure 3.13 where the CSM orbit perameters are
computed from the ephemeris data.
6.3.5 CSM Orbit Parameters

Recall that if Slh = 3 a new CSM ephemeris point is to be input via the DEDA.
At the top of Figure 3.13 a check on Slh is made against 3. If it is 3 the new
information is entered and the quantities tb and Slh are zeroed. The same orbit
parameters as determined for the IM on Figure 3.10 are not obtained for the CSM
from the "Orbit Parameter Subroutine" on Figure 3.15. Next the CSM epoch bootstrap
is accomplished if required. As indicated previously if the time since the CSM
epoch, i.e.

tb =t - tE

is greater than 1 CSM orbital period then the epoch time is increased by 1 orbit.
This is accomplished at the bottom of Figure 3.13 where TCSM is the CSM orbital
period.
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The logic flow then proceeds to Figure 3.14 where the calculﬁtions are done
to call the "ellipse prediction subroutine"” and obtain the CSM position and vel-
ocity (Ec and Xc) value at the present time. These quantities are then used for
the radar filter, Figure 3.16.
6.3.6 Radar Filter
Prior to discussing the equation flow logic of the radar filter a general

description of the radar operation procedure is discussed. First, it must be
understood that the radar and the AEA are separate equipment units and in no way
can radar information be accepted automatically by the AEA. Angle information is
obtained in the computer by "saving" the Z body axis direction cosines (331, a32,
a33) at the time that the radar gimbal angles are zero. This time is indicated to
the computer when S15 is set to 1. At this same time the astronaut must read the
range tape meter and within 30 seconds enter radar range via the DEDA., This is
entered as manual constant J18. Explicitly then the procedure is as follows:.
(1) The astronaut sets S0 = 2- This commands the Z body axis of the LM
to be pointed in the estimated direction of the CSM. .
(2) The astronaut sets the mode control switch to "attitude hold" (Bh = 0)
and by means of the "hand control" the astronaut orients the IM until
the radar gimbal angle on his attitude display are zeroed. At this time
the Z body axis is pointing toward the CSM. When the "hand control" is
taken out of its detent and Bh = 0, the AGS computer automatically enters
the "follow-up" mode (83 = 1).
(3) When the gimbal angles have been zeroed the astronaut enters via the DEDA
the appropriate code that sets S15 =1,
(4) "Radar Range" is read from the tape meters and entered as J18 via the DEDA.
This entry should be made within 30 seconds after taking the radar point.
The radar filter (Figure 3.16) is a simplified Kalman filter. Derivation of the
equations are contained in Section 7.3.2 of this report. Briefly, the filter operates
by assuming that knowledge of the CSM position and velocity is perfect. IM position
and velocity is then updated based upon the navigation estimate of IM present position
and velocity, the radar measurement, and the relative "credibility" of these two
quantities. This "credibility" is expressed in the equations by the terms P

11’
P22 and 02. Definition of these terms are:

P12’

Pll - navigation position error variance
Pl2 - navigation position, velocity error covariance

op = navigation velocity error variance

o - sum of the navigation rosition and radar measurement error

variances



05952-6076-TO00
Page 35

To see how the equation logic works reference is made to Figure 3.16. 1In the
first block of computations the relative range vector R between the CSM and IM is
computed along with its magnitude. The desifed Z body axis direction (ZbD) is also
computed. In sddition relative range rate, R, is computed for use in the range rate
filter (described below) and for display purposes. Bypass the check on Rx* for the
] is hormally zero except when radar data

12° 12
is set, to 1 (direction cosines are to be stored)

moment and proceed to the check on 6
is being taken. That is, when S15

612 is also set to 1. This is done in the DEDA routihe and 1s indicated at the

bottom of Figure 4.6. When 612 is zero and no radar updating is being done, R¥*

(the radar range measurement) is set to zero. The logic flow then proceeds tb point

@ on Figure 3.17.

Assume, however, that a radar measurement is to oc made. Assume also that the
astronaut has lined up the Z body axis of the IM pointing toward the CSM and he
erterz the code setting S.. = 1. At this tfme he notes “he radar rarse un the tape

15 t

meter., 612 is set to 1 automatically end 815 = 1. ¥ollowing t*: flow diagrams it

15 sean that a ouantity At is computed. This quantity is the .ime elapse’ since the
previous radar point. Assume this to be the first rade: _n3.* taken. ihen tl is

zero and At is some large number. Tha calculations or “11’ Pl? and P=,2
since they have never been initialized. In thiz casc &L ovorfiows (inm the check
following the Pll’ P12’ Pé2 calculstions) and the quantities Pll’ P o and kZZ are
initialized. I{ this was not the first radar poirt then the calculstions of

have no meariry

Pll’ P12’ Pé2 would be valid. These calcﬁlations propagate the error covariance from A
the time of the previous radar point to the present time. In this case, assuming

the time since the last radar meésurement is not unduly large (less thun 210 séconds),
no overclicy eccurs and the block at the bottdm center of the figure is enté;ed.
Here the weighting is determined (wl and VQ) based upon range and the magnitude of Py
and P12' In addition the time of’the raser measurement is saved as tl (for use in the

calculation of At at the next time a messurement is teken) and S,. is set to zero. For

15
later purposes the relative range vector R is stored as R* and W, is stored as
Wi. This completes the radar computations this 2 second cycle and the logic flow

as previously proceeds to the block where R** is set equal to zero. Note that the
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navigation update based upon the radar measurement has not been performed yet. This
is done in the 2 second computer cycle that the astronaut enters radar range as J18
into the DEDA.

“ach succeeding two second computing increment (until the navigation update is
made ) the logic path followed after entering at the top of the page is that of
612 = 1 and 315 = 0., Here wl is updated to take into account the fact that the
navigation update is not being performed at the time of taking the radar measure-
ment. If the range measurement has not been entered then the logic flow leaves the
radar filter page as described above. 1In the cycle that the radar measurement, R¥¥,
1s entered to the computer, R¥* is greater than zero and the computations at the
right center of the page are performed. This is where the navigation updating occurs.
The quantity §£ is computed which is the difference between the estimated relative
range vector at the time the radar measurement was taken and the actual radar
measurement. This quantity is then used in conjunction with the filter weights Wl
and wﬂ to urdate the present estimate of IM position and velocity. This is done

by the equations

r=Wbr+r
V=wbr+y

Note that the radar measurement taken at some prior point in time is being used to
update the present IM position and velocity. Of course the accuracy of this
technique diminishes as the time between taking the radar measurement and perfbrming
the update increases. Studies are presently being conducted on the maximum allowable
duration between these two events. Until these results are obtained a time limit of
30 seconds has been placed on this procedure. After the updating has occurred the
magnitude of the error covariances are decreased since the estimate of position and
velocity has been improved. Moreover 612 is set to zero so that the radar filter is
not entered again until another radar point 1is to be taken.

The astronaut also has the capability of entering into the computer the radar
range rate obtained from a tape meter. This entry does not need to be associated
with the range measurement discussed above. When R is entered the IM velocity
vector V is updated in the logic path followed when Roex ﬂ 0. The logic flow then

leaves the radar filter computations'as usual.
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6.3.7 Guidance Equations
After leaving the radar filter page, the logic flow proceeds to Figure
3.17 vhere the actual guidance equation calculations begin,
Entering at the top of Figure 3.17 several calculations are performed
to obtain parameters of the IM orbit. Specifically, IM horizontal velocity
V., semi-latus rectum p and eccentricity squared (ei) are computed. From

h
the quantities ey and p, the quantity q is computed which is the pericynthion

of the IM orbit. This quantity later has the value of mean lunar radius, JS,
subtracZed from it. q then is used for display purposes. If ei is greater
than 2~ s, the calculation of q can exceed its scaling in the computer so
that q is merely set to the value 220.

Immediately following this several unit vectors are generated. Based
upon the present position of the IM (Hl = r/|r|) and the unit vector, W,
parallel to the angular momentum vector of the CSM, the horizontal vector
Xl parallel to the CSM orbit plane is generated. From Hl and !i then the third
unit vector W, for the IM is calculated. The CSI and CDH maneuver are both

"in-plane"” maieuvers so the quantities V& and y are set equal to zero. These
quantities are calculated where needed in the other maneuvers. A dummy variable
fA is set equal to * (present IM altitude rate) and the flag 610 is get to

zero. This flag controls the logic flow later in the equations and is to be
zero in all guidance modes except "orbit insertion” where it is set to the

value 1. An angle, &, is computed for display purposes which is the angle

between the Z body axis and the IM local horizontal plane.

Following these computations, a series of checks are made on S10 to
determine the guidance mode of operation. The various modes of Slo are as
follows:

( o orbit insertion
1 Cs1
So™ § 2 ' CDH ‘,
3,4 direct transfer (TPI, MCC)
L 5 external AV

The first check on Slo is against the value 5. If S10 is 5, the external

AV mode of operation is entered.
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6.3.7.1 External AV
When S, is 5, the "external AV" mode is entered and the first check

10
in this path is against the quantity S The first time down this psth,

oT7°
S07 must be 0. To insure that this is so, S07 is set to zero when any other
guldance mode is selected. This is the equation just to the left of the

check of Slo o7 is zero, the next check made

is on the ullage counter. The ullage counter must also have an initial value

against the value 5, Assuming S

of O for the "external AV" mode of operation to work properly. This means that
the vehicle must not be thrusting in the positive X body axis direction the
cycle the external AV mode is entered. The next block of equations establish
the external AV maneuver to be performed, This block is bypassed once thrusting
has started. Prior to discussing this initialization, the two types of "external
AV" maneuvers possible are discussed.
(1) RCS Thrusting with Vehicle in Attitude Hold

Assume for some reason it is desired to perform a maneuver with the

thicle attitude fixed in inertial space. This can be accomplished

by setting the switch SOO to zero, S10 to 5 and inputting the appro-~

priate maneuver constants (discussed below). This maneuver is to be
rerformed with the RCS engines since the E/OFF command will be genera-
ted when the mode selector (SOO) is not equal to 1 (see Section 6.2.5).
The maneuver will be performed separately along each axis. If thrusting
is done first along the positive X axis, no further action need be
taken by the astronaut to get the "external AV" mode operating
correctly. This 18 so because when thrusting along the positive X
axis occurs the ullage counter increments itself and the external AV
initialization equations are bypassed as desired (SO7 is set to 1).

If, however, thrusting is performed along one of the other axes or
along the negative X body axis, then S07 must be set to 1 just prior
to the initiation of the maneuver by the astronaut. In this situation

then the "external AV" initialization equations are again bypassed as
desired when the maneuver has begun.
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(2) Thrusting with the Positive X Body Axis in the Direction of the
Desired Velocity-to-be-Gained
In this mode 3., is set to 5 and S, . to 1. The vehicle will automatically

10 00
orient itself to point in the correct direction. No extra entry (on the

switch 807) is required and no constraints are placed on which engines
can be used.

In the "external AV" mode the desired maneuver is characterized by the values
of the input constants 28J1, 28J2 and 28J3. A value of 28J1 characterizes the
velocity-to-be-gained in the IM local horizontal direction parallel to the CSM orbit
plane with a positive value indicating a posigrade maneuver. 28J2 characterizes the
velocity-to-be-gained in the horizontal out of CSM plane direction Qith a positive
value indicating a direction opposite to the angular momentum vector. 28J3
characterizes the velocity-to-be-gained in the IM local radial direction with a
positive value indicating thrusting toward the moon.

These components of velocity-to-be-gained are resolved into inertial coordinates
and fixed once the maneuver starts, yielding an initial velocity-to-be-gained vector
AV. égs, the accumulated velocity gained in inertial coordinates is set equal to
zero until the maneuver starts at which time the initialization block is bypassed

and the velocity to be gained vector is computed as
Vo = & - Log

or in words, "the velocity-to-be-gained equals the original velocity-to-be-gained
minus that already gained”. The magnitude of !é is then obtained and 611 set to
zero. 6., is another logic routing flag (used in the CSI calculation) that must be

11
zero the first time the CSI calculations are performed. The logic flow then proceeds
to on Figure 3.26. Here, until the velocity-to-be-gained is less than 5K26,
the desired pointing direction is computed to be in the direction of the velocity-

to-be-gained
=V
%D --c;./vG
When VG becomes less than 5K26 the desired X body axis direction is not updated because
of the large attitude maneuvers that may ensue from the indeterminate calculations

of V . The velocity-to-be-gained along each body axis (V V, ) is then
-G/vG Gz

Gx’ vﬁy’
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computed and used in the calculation of !g as explained in Section 6.2.1. Note
that if the vehicle is in "attitude hold" all the quantities (ch, Gy’ ch) could

!

be non-zero. If however the vehicle is in "rendezvous steering" (SOO = 1) the vehicle

will orient itself such that VGx = VG and VGy = VGz = O, The discussion just com-
pleted concerning the lower portion of Figure 3.26 is common to all guidance modes
and will not be discussed in the following subsections.

6.3.7.2 Orbit Insertion

Returning the Figure 3.17 follow the logic flow down the left hand side of the
rage. Assume that S10 # 1 2and note that 511 is set to zero. Again this is so
because the first time the path 810 = 1 is entered 611 must be zero. Assume also
that S10 # 2 but rather that SlO equals zero which means the guldance equations are
in the orbit insertion mode of operations.

This guidance mode has been designed to drive the IM vehicle to a prescribed
altitude above the moon with specified values of altitude rate and horizontal velocity.
In addition, steering in this mode is such that the IM is driven into the CSM orbit
plane at engine cutoff with an out of plane velocity component of zero. Of course, in
some Abort situations 31l these conditions cannot be achieved. Comments on these
situations are contained in the following discussion.

At the bottom of Figure 3.17 several quantities are established. TFirst 510 is
set to 1 tn control the logic flow later. The desired final value of horizontal

velocity V is set to the value of the input constant 2LJ. The present out of

plane compggent of position (y) and velocity (V&) are computed and the desired
inal value of radial rate (?f) is established. A detailed discussion of this
computation is considered below. Next the in-plane component of horizontal
velocity, VnA’ is computed and the logic flow proceeds to on Figure 3.25. At

this point the magnitude of the velocity-to-be-gained is computed from the following

equation
v =r(v v ) s (2 - F)2 e (v )Q-YI/E
G L' nf hA o f ‘A Yy
final inplane” present final value of present value present value
horizontal inplane radisl rate of radial rate of out-of-plane

velocity horizontal velocity
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The quantity ¢ 18 computed to determine i1f the thrust maneuver is to be posigrade
or retrograde. Since SlO = 0 the time to burn TB is computed. Derivation of this
equation is contained in Section T7.4.3 of this report.

Following the calculation of T the desired values of the derivative of radial

rate and the derivative of out of pfane velocity are computed. In addition, the
predicted value of final radial position and out of plane position are computed.
Then since 610 equals 1 the desired values of the second derivative of radial rate
and the second derivative of yaw velocity are computed. These calculations are
based upon the orbit insertion guidance law which is such as to maintain ;& and §d
constant. Detailed discussion of this guidance law is presented in Section 7.k4.3
of this report. Following these computations the value of ? is modified to ‘
account for vehicle motion about a spherical body. The resulting value of F is

the desired vertical component of the thrust acceleration. The terms —l and

V.2 1‘2

—% are the gravitational and centrifugal accelerations. The logic flow then
proceeds to point (::) on Figure 3.26. Note on Figure 3.25 that ;d and §a are set

to zero when § equals zero. This occurs in all guidance modes except orbit

10
insertion.

The purpose of the equations of Figure 3.26 is to generate the desired pointing
direction of the vehicle X body axis and to obtain the velocity-to-be-gained along
each body axis.

¢ is defined as the sine of desired pitch angle and ¢ as the sine of the
desired yaw angle. In general, these quantities are computed as the desired value
of radial acceleration divided by thrust acceleration and desired value of out of
plane acceleration divided by thrust acceleration respectively. However, when the
IM 1ifts from the lunar surface or if an abort occurs near touchdown it is more
desirable to thrust vertically than to follow the computed pitch profile. This is
accomplished by setting wp equal to 1 and *y = to O, Then the desired pointing
vector XbD is merely 91

The logic at the top of Figure 3.26 is used to determine if the thrust vector
should be in the radial direction or not. The first check is that of IM altitude

above the lunar landing site (r-5J) against the constant 21J (25,000 ft). If the

» the unit vector in the radial direction.

altitude is less than 21J a check is made of altitude rate (E) against the constant
22J (50 fps). If r is greater than 22J the desired pitch profile is flown. If not
then the vehicle is commanded to thrust vertically. This last check actually con-
trols the time at which the IM starts pitching over after the vertical rise from

the lunar surface. For nominal missions this occurs approximately 12 seconds into
the powered flight. '
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Following calculation of the desired pointing vector EbD the various components
of velocity-to-be-gained are computed as discussed in Sections 6.2.1 and 6.3.7.1.
These components are meaningful only near cutoff, This then completes the orbit
insertion calculations for any 2 second computing cycle.

Two ideas above have been glossed over and are considered here in somewhat

more detail. The first is the calculation of ff and the second is the calculation

e

and limiting of r, and ﬁa.

d
The value of éf is obtained from the equation

. L h
I'f = K)-l- (KS = I'f)
and then limited between the values of 23J and 4LKH as follows

<k
< rf s KS

Then éf as a function of final altitude appears as follows (for the DMCP trajectory)

J23

u
K = 80

. (fps)

P30 l : T -
20000 10000 60000

Injection
Final altitude (r. - J°) (ft)
" FIGURE 2.

ALTITUDE RATE VS. FINAL ALTITUDE

The reason for this type of function is as follows: When the predicted final value
of altitude is near the desired burnout altitude the altitude rate should be the
desired value (J23). However some abort situation may arise where it is impossible
for the desired final alﬁitude to be achieved. For example the low fast abort that
was discussed in Section 7.4 of Reference 3.
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In this type case, the object is to be on a rising (r > 0) trajectory at
the time of engine cutof{ so that at a later time appropriate modifications can
be made to the orbit to ensure safe pericynthion. Prescribing ff as above

yields this condition.

The calculation of ;a and ;a
for F& contains the temm J16 which is the desired final altitude at the time of
orbit insertion. Derivation of this equation is contained in Section 7.k4.3 of

are contained on Figure 3.26. The equation

this report. The value of ;d

and zero. These values are chosen so as to limit the maneuvers of the vehicle.

is constrained to lie between the values of Kis

L]

When T3 lies outside either of the limits, the effect is that the equations give
up trying to drive the final altitude of the IM to the desired altitude but just
make a limited correction. The orbit insertion maneuver will continue, however,
until the desired velocity is obtained.

The equation for ﬁa is similar to that of F&. In this instance, the predicted
final value of out-of-plane position error is used in the calculation. This
quantity is desired to be driven to zero. Again, f& is 1limited to the value
+ K§6. If the computed value of ;& is outside the limits, the equations give
up trying to drive the LM into the CSM orbit plane at engine cutoff but Just
make a 1limit correction. The philosophy used in the simulations made to this
date has been to steer out approximately 1/2o out-of-plane error if the abort
occurs at liftoff. If the abort occurs later during orbit insertion, only a
smaller out-of-plane position error is removed. Since the CSI and CDH maneuvers
are done parallel to the CSM orbit plane, any additional out-of-plane error is
removed at the TPI maneuver. For quantitative purposes, two simulation runs were
made with the LM 29 out of the CSM orbit plane at 1iftoff (see Reference 3),
Section 7.2. In the first run constant K§6 was set to steer out 1/2° of this
error during orbit insertion and the remainder during the direct transfer phase
(TPI maneuver). Total AV expended to effect rendezvous in this situation was
6388 fps. In the second simulation run, the constant K€6 was set so that all 2°
were eliminated during orbit insertion. 1In this situation, the total velocity
required to rendezvous was 6576 fps. These results indicate the desirability
of the selected orbit insertion philosophy.
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6.3.7.3 CSI Routine
The guidance routine under discussion in this section is the CSI routine which
is initiated on Figure 3.17. Shortly after the orbit insertion maneuver is completed,
the astronaut switches S from zero to 1 and ascertains that the following targeting

10
constants have been entered:

tigA absolute time at which the CSI maneuver is to be performed
Jl absolute time at which the TPl maneuver is to be performed
J2 desired line-of-sight angle between the LM and CSM at time Jl.

The purpose of the CSI calculation 15 to determine the magnitude of the horizontal
burn to be performed parallel to the CSM orbit plane at CSI time (t ) such that
following the coelliptic maneuver (CDH maneuver) the desired line-of-sight angle (J )
between IM and CSM will be achieved at time Jt. By definition, coelliptic means that:
(1) the product of semi-major axis and eccentricity of the IM trajectory equals the
same product of the CSM orbit, and (2) the line of apsides of the two orbits are
aligned. For calculation of these quantities, the semi-major axis of the IM orbit

is obtained as the semi-major axis of the CSM trajectory minus OAr, where Ar is the
distance between the two orbits on the radial line passing through the IM at the time
of the CDH maneuver.

The solution of this problem is solved by an iteration technique. In each two-
second computing increment, three trial vaiues of horizontal velocity magnitude
increments, VH’ are selected and an ap; ropriate error function evaluated for each.
The magnitude of the successive velocity increments differ by the quantity 65.

The value of the error function associated with each trial value of horizontal
velocity increment is examined and the solution corresponding to the minimum value
of error retained.

The horizontal veiocity magnitude corresponding to the minimum value of error is
used as the second of the three trial values in the next 2-second computing increment.
To cause the iteration to converge to the correct value, the following rule is used
to modify AE‘ If either the first or third trial value of horizontal velocity
increment yielded the minimum cost, increase the value of AE (up to a limit) by a
factor 1.5. If the middle (second) trial value of horizontal velocity increment
vielded the minimum cost, decrease the value of AE by a factor of O.4. Thus,

several sequences of the iteration may appear as follows.
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The maximum time observed to date for the iteration routine to converge to
within l/h fps has been 36 seconds. This situation was obtained under adverse
conditions. Usually it takes about 24 seconds to obtain the desired solution.

In order to simplify the discussion of the equation flow logic, derivation
of many of the equations have been placed in Part II of this report. The dis-
cussion begins with mission time sometime after orbit insertion and prior to CSI.
The first time the logic follows the path SlO = 1, the quantity 611 equals zero.
This is shown on Figure 3.17. This initializes the quantity AE and Vho' 6ll is
then set to 1 and this block is no longer entered. The flow loglic now proceeds to

on Figure 3.18 where the quantity Ti is computed. This quantity is the time
remaining until the time of the CSI maneuver which is used in the ellipse predictor
routine to obtain the predicted position and velocity of the IM at the time of the

CSI maneuver. This predicted position and velocity is denoted by r. and V_ res-

> 5
pectively. TI is then set to Ti for later use and the horizontal unit vector

parallel to the CSM orbit plane, !lA’

at CSI time will be in this direction.

1s computed. The velocity increment added

The next group of equations set up the iteration routine for the present
two-second computing increment. This block is entered only once per two-second
computing increment. The various quantities are:

i - The variable used to index the three trial values of horizontal

velocity increment. This parameter assumes the values -1, O, +1.

The horizontal velocity increment associated with the index i = O is
greater than that associated with the index i = -1 and less than that
associated with the index i = +1. This indexing then makes it easy
to control AE in the next computing increment because if the index
associated with the minimum error this cycle (denoted by io) equals
zero then the quantity AE should be decreased because the middle

value was chosen as best. If not, then AE should be increased.

C - This quantity is the minimum value of error each two-second computing
increment, which is originally set to the maximum value 23. Even
though the best solution of the three trials per two-second computing
increment is saved for use in the next two-second computing increment
the value of error associated with this solution is not saved. Thus,
the three values of error are compared against each other and not with

any from previous computing cycles.
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VH - This quantity is the trial velocity increment and is first computed as

= - - N
VH Vho Vh 6

where
Vho is the previously determined (from preceeding computer cycles) best
value of horizontal velocity increment obtained plus the IM horizontal
velocity in that computing increment. The formulation has been done

in this way to make the solution valid after the maneuver begins.
Vh is the present value of horizontal velocity

AB is the difference between trial horizontal velocity.magnitudes.
To understand what is taking place assume that the CSI calculations are
being done for the first time., Then Vho = Vh from the initialization on
Figure 3.17 and ﬁg = 2K5. The quantity VH = VhO - AE = Vh - Vh - AB = -2K5,
Thus the first horizontal velocity increment used is -2K5. As will be seen
below the second trigl horizontal veiocity increment is obtained from the

first by the equation

Vg= Vg + %
or in tnis case

VH = -2K5 + 2K5 = 0O

Similarly, the third trial value of VH is obtained by adding AE to VH'
Thus, the first 2 second computing increment in which the CSI calculations
are done, the trial velocity increments are -2K5, O, +2K5 indexed by

i =-1, 0, +1 respectively. The best of the three values of VH is selected
and denoted by Vo and the quantity-Vho used in the next 2 second computing

increment is obtained as

Vho = Vh + Vo

Also AB is modified as described above. Thus when the calcuiation for VH

is done in the next 2 second computing increment it assumes the value
E Y " % " VY, n-1t % "V, 0 %

vhere n and n-1 have been used to denote present values and values valid

n

2 seconds vi .
previously. Assume for the moment that Vh, n-1 ™ Vh, n
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then

= - N
VH Vo 6

is the norizontal velocity increment used as the first trial value.
As above, the second trial value is given by VH = VH + CB = VO and
the third by VH = VH + AB = VO + C%. Remembering that Vo was the
best horizontal velocity increment f{rom the previous two-second
computing Increment, it is seen that in the present computing incre-
ment the searcn is made around the previous best value. The process
continues in this way until the best value of VH has been determined.
This is characterized by AB shrinking to a preset value. It is not
apparent in the above discussion why the values of Vh have been used.
The reason is that once the maneuver starts we desire the iteration
routine to follow the effects of the maneuver (maintain the correct
answer). This is done by effectively decreasing the value of VH by
the horizontal velocity gained or approximately by Vh, n-1 - Vh'
- predicted value of LM altitude rate at CSI time.
r, - predicted value of LM altitude rate at CDH time. This quantity is

~ .
N

o=

set to zeru because the CDH maneuver is programmed to occur at either
apocynthion or periéynthion. The CSI calculations assume the CDH
maneuver is made impulsively. During the CDH maneuver itself, however,
the assumption of zero }A is not made because the actual burn is of
finite duration and also may not occur precisely at the line of
apsides.
The next group of equations beginning with the calculation of K55 to the
calculation of TA are done to determine the time from the CSI maneuver to the
CDH maneuver for the trial value of horizontal velocity increment under con-

sideration. This desired time is TA. The equation for V__ is the first equation

to be solved three times per computing increment. That 12? later in the flow logic,
directions will be given to return to on this page. The time of the CDH
maneuver is designated as either the first or second crossing of the line of
apsides after the CSI maneuver and is controlled by switch 816' If Sl6 = O, the
maneuver is to be performed at the first crossing and if S16 = ], the maneuver is

to be pe-formed at the second crossing of the line of apsides.
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The following possibilities then exist

- s
r5 316 i CDH Maneuvers Occur at
i
r — ot
<0 0 ; pericynthion
i
3
<0 1 ; aspcynthion
; .
>0 0 ! apocynthion
>0 1 f pericynthion

When %5 is close to zero either one of two possibilities exist
(1) The LM is on a near circular orbit in which case quantities such as
first and second crossing begin to lose their meaning
(2) The IM is either near apogee or perigee in which case the CDH maneuver
is to occur either at 180° away or 360° away.
In either of the situations the switch S17 should be set to 1 and 816 set to O for
CDH to occur at 180° or S17 set to 1 and Sl6 set to 1 for CDH to occur at 3600.
For (1) above it is obvious why this is necessary. The reason why it is necessary
in (2) is now presented. Assume the CSI maneuver begins just prior to say peri-
cynthion and it is desired to perform the maneuver at apocynthion and thus on the
2nd crossing of the line of apsides. Normally then 317 would be set to O and Sl6
set to 1. If the duration of the maneuver is sufficiently long for the IM to pass
through pericynthion then this configuration of switch settings would cause a dis-
continuity in the solution because now the second crossing occurs at pericynthion.
For this reason it is suggested that if ‘}5| is small then S17 should be switched
to 1.

At the bottom of Figure 3.18 the time T, is used to predict the value of IM

A
position and velocity g !6 at the'time of the CDH maneuver. The logic flow
then proceeds to \gE/ on Figure 3.19. The calculations on this page are used to

obtain several quantities required in the error function and to compute the various
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components of velocity required to perform the CDH maneuver. The first computations
on Figure 3.19 compute the CSM position and velocity at the time of the CDH maneuver.
The desired quantity from this information is CSM altitude rate, denoted by %c and

eventually saved as r 67 is set to zero merely to control the following logic

flow, fc is then calfulated and stored in iB' 67 is then set to 1. The purpose
of the calculations on the lower right of Figure 3.19 is to obtain the value of
Ar which is defined as the distance difference between the CSM and IM orbits as
measured on the radial line passing thru the IM at the time of the CDH maneuver.
Thus to obtain this, the distance of the CSM must be determined at the position
in the orbit specified. Since the IM can be out of the CSM orbit plane the pPro=
cedure used is to project the IM at CDH time onto the CSM orbit plane and the
compute the central angle between this projection and the CSM. This angle is
denoted by ef and division of ef by the mean CSM orbital rate yields the app-

roximate time T, that r., and 27 (CsM position and velocity at CDH) mﬁst be

6 T
propagated to be on the desired radial line. This propagation is done in the

ellipse predictor and the output is again denoted by r From this then the

0 Vo
distance of the CSM from the center of the moon can be determined along with radial
rate. This is done at the top right hand side of the page. Then since 67 has
been set to 1 the logic flow is to the left and the calculations performed to

obtain the following quantities.

Or definition above

op semi major axis of desired IM orbit equals semi major axis of
CSM orbit minus Or

VhA IM horizontal velocity at time of CDH maneuver -

nL mean orbital rate of desired IM trajectory

§f desired altitude rate of LM at CDH time

Vf desired value of LM velocity at CDH time

Vi desired horizontal veldcity at CDH time

After these calculations logic flow proceeds to <::) on Figure 3,25 where the

velocity-to-be-gained during the CDH maneuver is calculated as VG. Then since SlO
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equals 1 the logic flow returns to on Figure 3.20.

The equations on Figure 3.20 evaluate the error function, store the best
solution, generate the best value of the time of CDH maneuver and control the iter-
ation. At the top of Figure 3.20 the quantity b3 is calculated. b3 is defined
as the desired central angle between IM and CSM at TPI time based upon the desired
line of sight angle J2 and Ar. The error function is the absolute value of the
difference between b3 (the desired) and the actual central angle that would be
achieved if this trial trajectory were flown. It is this function that is mini-
mized. Derivation of b3 and the error function C is contained in Part II of this
report. The remainder of the iteration logic operates as follows. Assume the
first of three trial values of horizontal velocity magnitude (indexed by i = -1)
is being considered. The check of C against Co will be less than zero because
C0 was set to its maximum value at the beginning of the two second computer cycle
(see Figure 3.18). This solution then is stored in the block to the right of the
(C-Co) check and io is set to 1. Then since i equals -1, VH is incremented by A
as explained above and i is increased to 0. The logic flow then goes back to <:§s
on Figure 3.18 and a new trial solution is obtained. Back on Figure 3.20 if the
error value for this trial is less than the previous value of error then the new
solution is stored and io set to 0., If (C-Co) is greater than zero no new solution
is stored. Again i is checked and since i = O, VH
the logic flow again returns to <:39 on Figure 3.18. Back again on Figure 3.20
the same procedure is followed. This time, however, when the check on i is made

the flow is to the right. The direction to point the IM X body axis is obtained

and 1 are again incremented and

from the sign of VO and used as previously stated. ff is set equal to fA for

later purposes and the magnitude of velocity-to-be-gained during the CSI maneuver

is obtained as the magnitude of VO. The best time of CDH maneuver tigB is then

computed as t where TAO is the best value of TA' Then, if 1o (the index

1ga * Tao
of the best solution) is zero, A6 is decreased and limited. If, however, io =1

then A6 is increased and limited. The flow logic proceeds to on Figure 3.25.
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The purpose of going to Figure 3.25 is to use equations that have
already been programmed. In this mode (as in all modes except orbit
insertion) 610 is 0 so that Ty and Y4 are zero. Then, since Te =T,

and Vy equals zero, both ¥, and yd are zero. In this mode of operation

these are the only equatiois of interest on this page.  The logic flow
then follows exactly as in the orbit insertion mode thfough Figure 3.26.
Now, however, both wp and wy equal zero so that the desired X body axis
pointing direction is established to be along the unit vector Vl in a
dirvection determined by v(the sign of the horizontal velocity increment).
6.3.7.4 CDH Routine

After the CFT maneuver has been executed, the astronaut inserts
the setting SlO =
3.17 is entered and the logic flow follows the path S,, = 2. In this

10
mode the CDH maneuver is computed as if the burn is to be done immediately.

2. Then, during the Z second computations, Figure

The equations to do this have already been discussed in the preceding

section.
When SlO = 2, several quantities are established for succeeding
calculations. Both T. and T, are set to zero because the calculations

I A
are being done as if the maneuver were to occur immediately. The

quantity Th (time until CDH) is computed as tigB - t. Moreover, Tg

and !6 are set equal to r and V respectively. The logic flow then
proceeds to@ﬁgon Figure 3.19 where the CDH maneuver is calculated as in
the CSI computations. Leaving Figure 3.19 the logic flow proceeds to
on Figure 3.25 where the velocity to be gained is computed. Note that
since S 0 is not equal to 1, all the CSI function and iteration logic

1
is bypassed. The logic flow proceeds immediately to the calculations

to determine the desired pointing direction X Now, 93 =0

vD*
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and T A as calculated on Figure 3.25. Then the logic flow proceeds

i}

« T
to Figure 3.26 as previously and Wy is set zero and wp = Eg wvhich is approximately
T

equal to The remainder of the equations are exactly the same as

previously.

Note that prior to the maneuver the desired attitude of the IM is not fixed in
inertial space but actually rotates with the IM vehicle. This is the same situa-
tion that occurs prior to the CSI maneuver.

6.3.7.2 Direct Transfer (TPI)

All possible logic paths on Figure 3.17 have been discussed with the exception
of the path going to <::) at the bottom of the page. This path is used when S
1s either 3 or 4, the direct transfer modes.

10

The direct transfer mode is used in the coelliptic rendezvous scheme following
the CDH maneuver. The two previous maneuvers (CSI and CDH) were performed such
that at the desired TPI time (Jl) the proper phasing exists between the IM and
CSM so that the desired line of sight angle is achieved. For each line of sight
angle at TPI time there is a corresponding best time until rendezvous. The
values used in the simulations to date have been:

desired line of sight angle (J2) 26.6°

time of TPI to rendezvous 2880 sec
2880 seconds corresponds to 140° central angle of the CSM in an 80 nm circular
orbit.

Because of errors in the system (sensors, navigation, maneuver execution, etc.)
the desired line of sight will not be achieved at exactly the targeted TPI time but
should occur within some relatively small time period near the nominal TPI time.

For this reason a guidance option has been included where the astronaut can deter-
mine when the desired line of sight will be achieved and perform the maneuver at
this time if so desired. In this mode also, the astronaut could determine total _
velocity required to rendezvous at various times and perform the TPI maneuver based

upon this quantity.
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The two different guidance modes operate as follows:

S10 = 3

The astronaut introduces an increment of time, TA’ ahead of ﬁhe present
time at which he wishes to look at the rendezvous solution. The time

at which the TPI maneuver is to occur is alwﬁys moving ahead 2 secs per 2
second because the time of initiation of the burn t equals t + TA' T

igC
1s a fixed number and t increments two seconds per 2 second. When the

A

solution is satisfactory - based upon DEDA monitoring of the line of sight

angle or total velocity required to rendezvous - Slo can be set equal to 4.

510 = L

Whereas the guidance mode S10 = 3 1is used for a form of "mission planning"
the mode Slo = 4 is used in general for the maneuver itself. If the desired
rendezvous solution is found with SlO = 3 and then S10 is set to 4 no ad-
ditional entry of tigC need be irserted in the computer since this is done

automatically. If guidance mode 819 = 3 is not used then when S 0= L g

value of TPI time (tigC) must be inserted. Many different valuei could be
tried if the astronaut desired to do some "mission planning” in this mode
and did not care to use the alternate mode. After a value of tigC is in-
serted a solution is found in one comput ing increment.

Assuming the value of tigc has been selected (and SlO = 4) then the quantity
TA is the time to go until the maneuver. This quantity could be used to set

the events timer.

6.3.7.5.1 Equations Description

Following the logic on Figure 3.21 it is observed that when Slo = 3 the input
quantity is TA and tigC 1s computed whereas when Slo = u'tigc is the input quantity

and TA is computed. The remainder of the logic 1s the same for both modes. Tr is the -
time to rendezvous. If TA is greater than zero (meaning the burn has not been initiated
yet) then the position 55 and velocity 25 of the IM at the time of the maneuver is as-

certained from the ellipse predictor. If 'I‘A 1s less than zero it is set to zero for
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use in the ellipse predictor and 55 and !5 are the IM present position and velocity.

Next, the position I, and velocity !c of the CSM are updated to the same time as

that of the IM. From these two quantities the line of sight angle, is computed.

[a}
" LOs’
In order to determine the transfer trajectory to rendezvous, the position and velocity

of the CSM must be determined at the desired time of rendezvous. This is done by up-
dating the CSM through a time Ti from the CSM epoch point where (assume J3 = 0)

ti=tb+Tr

where tb is the time from the CSM epoch point to the present time. The CSM position
at rendezvous 1s denoted by I and the velocity by XT
p iterator two other quantities are calculated, T and p. T 1s the time from present

« In preparation for use of the

to rendezvous if t > tigC or the time from the TPI maneuver to rendezvous if

t < tigC' p is an initial guess of the value of the semi latus rectum for use in

the p iterator, re is the magnitude of the IM radius vector at either the present

time, if ¢t > tigC’ or that of the IM at the time TPI if t < tigC' The logic flow

then leads directly to Figure 3.22, the first page of calculations of the p iterator.
The p iterator equations contained in Figures 3.22, 3.23 and 3.2k are used

to answer the following guestions. What trajectory passes between two specified

points in a given time T? When at the first point on a present trajectory what

velocity must be added to achieve the desired trajectory? What velocity is re-

quired at the second point to be on the CSM trajectory? Of course, the first point

mentioned is either the present position if t > ti or the position at the TPI

gC

maneuver time if t < t The second point is the rendezvous point.

The actual detailiggf the p iterator are contained in Part II of this report.
Here only the limitations imposed by the p iterator are considered and the desired
outputs noted. The first restriction due to the p iterator equations is that the
“ stable member XZ plane should be within 80 degrees of the IM orbit plane. This re-
striction comes about because of the calculation (on Figure 3.22)
sgn c, = sgn (y yc)
where y, and y, are the components along the y inertial axis of El and !é respectively.
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The term sgn ( y yc) is an approximation to the exact expression sgn (Hl . Hc)' The
constraint of * 80° imposes no problems on the planned orbital alignment procedures.
In the case of lunar alignment the stable member xz plane essentially coincides with
the IM orbit plane.

The next restriction imposed by the p iterator equations is the central angle
through which rendezvous is to occur. Theoretically, a p iterator yields no
solution to the problem when the central angle between the first and second points
discussed above is any multiple of m orbits. This is evidenced by several equations
in the p iterator which contain divisions by the quantity 5 which is the sine of the
central angle and is zero at these points. Because of the computer word size a
region of increasing inaccuracy occurs near these singularities. For lunar missions
these regions are *+ 10° and for earth missions the constrained region is * 20°.

In the p iterator, eight trial trajectories are considered each 2 second computing
increment. If any of these trial trajectories has an eccentricity greater than 0.5
the p iterator will not determine the solution to the problem. A check is made in
the p iterator to determine if after the 8 trial trajectories have been tried,
the final trajectory is sufficiently close to the desired trajectory. This is done
by comparing the time it takes to get from the first point to the second point on
the chosen trajectory with the desired time for the transfer to occur. If these
numbers differ by more than 2K20 seconds (2 seconds) then the p iterator will
not yield a solution. A way to check the p iterator to see if a solution has been
obtained is to examine the quantity VT which is essentially the sum of the magnitudes
of the 2 velocities to be gained (initial and final). 1If the value of VT equals 2K11
(8000) then the p iterator has not obtained a solution.

The outputs of the p iterator needed to perform the first maneuver (both for
steering and for velocity-to-be-gained) are if ~ the desired radial rate after the TPI
maneuver, VG - the velocity-to-be-gained, Vy - the out of transfer plane velocity
component, * - the indication of a posigrade or retrograde maneuver, and fA -
the actual radial rate at the time the maneuver is performed. Then the output of
the p iterator goes directly to on Figure 3.25 where the computation of T, is

B
performed. The remainder of the equations are as discussed several times above.



05952-6076-T000
Page 57

It 1s interesting to note that if the flight equations are in the "rendezvous
steering"” mode (SOO = 1) prior to the time of the TPI maneuver the vehicle will
orient itself in inertial space to the correct attitude required at the time of the
maneuver. This is in contrast to the CSI and CDH maneuvers where the vehicle will
meintain the correct attitude with respect to the local coordinate system (91’ !l’
H)-

Before concluding the discussion of the guidance equations it should be noted
that it is not necessary to orient the X body axis of the vehicle in the desired
direction of thrust, i.e. set SOO = 1, for these various guidance options (orbit
insertion, CSI, CDH, TPI). This has already been pointed out for the "external AV"
mode where a separate section was presented on placing the vehicle in "attitude hold"
(SOO = 0) and thrusting along each axis individually. This same procedure can be
used in all other guidance modes also if desired.* In addition, this is a feasible
way of eliminating residual velocity-to-be-gained after engine cutoff. It should
be noted, however, that the maneuver must be accomplished with the RCS engines

since the engine OFF discrete is set when 560 £ 1.

* Obviously, more propellant will be required if each AV component is reduced to

zero separately.
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PART II
DERIVATION AND DISCUSSION

7.0 INTRODUCTION
In this part of the report derivations of many of the important equations

are presented and discussed. There are three general categories considered.
These categories and the subsections contained within them are:
ALIGNMENT AND CALIBRATION

Body Axis Align

IMU Align

Tunar Align

Gyro Inflight Calibration

Accelerometer Inflight Calibration
Gyro lLunar Calibration
NAVIGATION
Direction Cosine Updating Algorithm
Derivation of Radar Filter Equations
GUIDANCE
Attitude Error Commands
Ellipse Predictor Subroutine
Steering Equations for Orbit Insertion
Derivation of Cost Function for CSI Calculations
Derivation of the Equations to Obtain Coelliptic Orbits

Derivation of p-iterator Equations
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7.1 Alignment

The alignment of a strapdown system 1s essentially the computation of the
correct direction cosines which relate the vehicle body axes to the desired
inertial coordinate axes. This alignment may be accomplished in many different
ways, three of which are mechanized in the IM abort guidance system.

7.1.1 Body Axis Align (Sy, = 5)

In this alignment mode of the AGS, the direction cosines are set equal to

a unit matrix. This is equivalent to aligning to an inertial coordinate system
which coincides with the vehicle body axes at the instant the alignment is
performed.

7.1.2 IMU Align (S, = 3)

In the IMU alignment mode, the AGS direction cosines are set equal to the
PGNCS direction cosines computed from the FGNCS Euler angles Qp, ¢p, tp. This
alignment method is in error due to the quantization of the FGNCS Euler angles
(40 seconds of arc), the PGNCS alignment error, and also by the amount the FGNCS
inertial platform has drifted since it was aligned. The equations for comput ing
the desired (FGNCS) direction cosines are shown below, (Equation 7.1.2) and are
based on the gimbal order of the FGNCS system as expressed in Equation 7.1.1.
IMU alignment is performed prior to the inflight gyro calibration, before the
descent of the IM vehicle to the lunar surface, and on the lunar surface if the

PGNCS is still operating after the lunar landing has occurred.

1 o0 0 C¢ S¢ O ce 0 -Se

(a;y] = 0O Ccp Sp| |-8§ <cCcy O 0 1 o (7.1.1)
0 -Sp Cp o o 1 se O Ce

vhere Cf = cos f and SPp = gin B
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8, " cos *p cos ep

a12 = gin *p

83 = -cos *p sin ep

(7.1.2)

8y = sin ¢psin *p cos ep + cos ¢p sin ep

-si 0S8
a_ , = n ¢p c yp

32

853 = CO8 ¢P cos ep - sin ¢P sin *p sin ep

Since the other three direction cosines may be computed from the above
direction cosines, and since these three direction cosines are computed in this
manner in the direction cosine update computations, the other three direction
cosines are computed as shown in Equation (7.1.3).

821 ¥ 83835 7 85833
By = 81833 - al3a3l (7.1.3)
a

23 ™ 810831 " 8183

Equation (7.1.3) 1s easily derived as = |8, ,



059526076 -T000
Page 61

7.1.3 Lunar Align Equations
Prior to the descent of the IM to the lunar surface, the Xb, Y., Zb vehicle

axes are aligned to a selenocentric coordinate system with the X axis through
the intended landing sight at the nominal time of landing positive outward
from the lunar center. The Z axis is defined as the cfoss product of a unit
vector along the angular momentum vector of the CSM orbit with a unit vector
along the X axis. Thus, the inertial coordinate system used for the descent
pﬁase has the X and the Z inertial axes in the CSM orbit plane.

When the IM lands on the lunar surface, the vehicle azimuth with respect
to the CSM orbit plane is determined by storing, upon command of the DEDA,
the AGS azimuth reference as defined by the appropriate elements of the trans-
formation matrix [A]. This azimuth reference 5, is defined to be the angle
between the Y inertial axis and the projection of the Z body axis on the
Y - Z inertial plane, measured positive in the right-hand rotational direction
about the X inertial axis. (See Figure 7.1). From this figure, the direction

cosines which

FIGURE 7.1
Lunar Align Geometry
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define the Z body axis location with respect to the X, Y, Z inertial axes

may be determined, and are presented in Equation (7.1.h4).

gy = Zb + X = sin 91
835 = Zb * Y = cos el cos.,éL
= ¢ 7= & 1.0
833 Z, + Z=cos 91 sin &, (7 )
Since agl = sin2 81, 1 - agl = cos2 91, the cosine and sine of the landing

azimith & as mechanized in the AGS are computed as shown in Equation (7.1.5).

These equations

a
33
sin 6'_ =
2 q1/2
| (1 - a3l]
cos §, = a32
¢ [1 - a2 ]17§ (7.1.5)

31

are valid only when Iell < 90 degrees. Since the maximum vehicle tilt angle
1s expected to be 30 degrees, and the IM is expected to land within 1 degree
from the nominal landing site, the equations used to define 6, are valid as
defined.

After the lunar landing, the AGS is aligned to another selenocentric
coordinate system with the inertial x axis through the intended launch site
at the time of launch, positive outward from the lunar center. The inertial
Z axis direction is defined conceptually by the cross product of a unit vector
along the CSM angular momentum vector with a unit vector along the inertial X
axis. That is, the Z inertial axis is parallel to the CSM orbit plane.

In the lunar align equations, the direction cosines which relate the
vehicle body axes to the local level lunar centered coordinate system described
above are computed with a low gain filter. This filter uses the accelerometer
outputs to obtain the estimate of the vehicle leveling errors, and an azimuth

reference constant 6A to compute the estimate of the azimuth error. 6A is the
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updated value of the landing azimuth reference constant &,, where GA =6, - Aé.

A6 is computed on the earth, and corrects for CSM orbit changes and the lunar

rotation during the IM's stay on the lunar surface. Since the updated value

for the azimuth reference constant is defined by the difference of two angles,

the sine and cosine of the updated azimuth reference constant GA may be computed

from Equation (7.1.6). Using this

cos (o - B)

cos o cos B + sin o« sin R

sin (o - B) = sin w cos B - cos o sin B

equation, and small angle approximetions for Aé, the equations for the sine

and cosine of 6A are

cos (6A)

sin (6A) sin § - A

6

cos 6, + A6 sin 6,

cos 6

Since the IM AGS is being aligned to a coordinate system with the X

inertial axis vertical;, the lunar gravity vector EL = g i, where X is a

unit vector along the x inertial axis and g  is the magnitude of the lunar

(7.1.6)

(7.1.7)

gravity. Thus, the components of lunar gravity along the X, Y, Z body axes are

By = BL 811
gy = gL 8'21
82 = gL 831

and the outputs of the body mounted accelerometers are

Ay, = Je. a); dt ~ g Ot &),

&V, = [e, 8y, 4t ~ g, 8t &g,

(7.1.8)

(7.1.9)
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The estimates of the leveling errors may be obtained by comparing the output
of the Y and Z accelerometers with Equation (7.1.9).

A9=l

—— - IS
vy~ Z At (av, - & Ot ag]

Ag = -t (7.1.10)

2 g:'zrt- [-AVy - gL At a

21]

The estimates of the azimuth errors are computed from the sine and cosine of
6A in the following steps. First the desired values for a32 and 333 are
computed, based on the assumption that a3l is equal to the sin 61 as described

in Figure 7.1. These equations are

2 )
83op = (1 - a3l)1cos oy
2\ .
833p = (1 - a31) sin 6A (7.1.11)

equivalent to Equations (7.1.5) used to compute the sine and cosine of 6.
the landing azimuth constant. The computation of a32D and a33D assumes that
the leveling error in a3l is small. The estimate of the azimith error is
then computed by taking the dot product between the desired orientation of
the Z body axis defined by a and the AGS orientation of the Y

body axis defined by a

317 %320’ ®33D

51’ a22 and a23.

48 = (a (7.1.12)

31%21 * 320820 * 833p8p3)

The approximations in Equation (7.1.12) are that As_ 1s a small angle, the
difference between 331 and a3lD is very small, and the integral of the lunar
13° ‘Since a3l is not a
function of the azimuth angle GA, and i1s only a function of the leveling angle,

gravity times a direction cosine is equal to g At a

331 may be used in place of a31D without any degradation of accuracy. However,
the azimuth alignment will not converge until the leveling errors of the lunar
align become small. The approximation of I: 8y & by aiJ(T) g T should cause
a negligible error as the direction cosines will be changing at a very slow

rate.
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The equations mechanized in the IM AGS for the lunar alignment of the

transformation matrix are presented in Equation (7.1.13).

1
by = Kog [a3la21 T 835p800 * a33na23]

1 1
By, = Ky (BV, + 0V, 1) - Kpg ag,
Aa’zA = K;8a32 - Ké7 (AV&, m-l) (7.1.13)
where
AaxA, AayA, AazA are the alignment correction increments
in radians.
aiJ are the present AGS direction cosines.
aiJD are the desired direction cosines specified in
(Equation (7.1.11)
1 1
K26’ K27, Ké8 are alignment gains.
In the lunar align equations, the gains presently used are
1
K26 = 0.007
1
K27 = 0.0U435
KéB = 0.009264595 (7.1.14)
41
The quantity g, At for a L0-msecond alignment cycle is 55 and is equal to

0.009264595, Thus, the effective alignment gains in the hardwired portion
?of the lunar align equations is 0.007 for azimuth and 0.009264595 for
leveling. After leaving the hardwired lunar align equations, the leveling
angle increments are shifted to the right 2 bits reducing the leveling gains
to 0.00231615.
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7.2 IM AGS Calibration

The AGS has the capability of performing three calibrations; prelaunch
gyro calibration, inflight gyro and accelerometer calibration (during free
fall), and lunar gyro calibration. '

T.2.1 Gyro Inflight Calibration
Any departure of the IM AGS direction cosines from their correct values

may be construed as being due to gyro drift. Since the FGNCS Euler angles,
which are used to compute the reference direction cosines, are quantized to
40 seéonds of arc, the departure of the AGS direction cosines is a combination
of the gyro drift errors and FGNCS Euler angle quantization noise errors.
Due to this measurement noise, the inflight gyro calibration requires the use
of a filter to achieve the desired accuracy of 0.1 degrees per hour.

A general linear system as represented by a vector state difference
equation ié shown below in Equation (7.2.1), where Eh is a column

Zn+l = ¢n+l, n Zh * % gn

vector representing the state of the system, ¢ is the transition matrix

n+l, n
from state Zh to §n+l’ gn is a general noise vector and 9, is the corresponding
distribution matrix. In the calibration problem considered here, Kn represents
the coordinate misalignments and instrument error sources which are to be
determined. The noise vector Qn corresponds to the gyro noise. 1In this case,

the observables In are assumed to be related to in by the linear relationship.

-n

with & Xn representing observation noise such as quantization errors. Letting

(7.2.1)

Y =MX +8Y (7.2.2)
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~

the estimate of the state vector at tn be denoted by Zn’ the general unbiased

linear estimate of Xn is

- . "
X =X +bo (Y -Y] (7.2.3)

where 5' is the predicted (extrapolated) value of X,

‘ ~
X' =0, n1 %1t %1 Y (7.2.4)
and
7 AI
Zn T Mn zﬁ (7.2.5)
and gn-l is given by X _
Upq=Tpy =0 (7.2.6)

(Z = ensemble average of Z)

In the case of the gyro calibration filter, several simplifying assumptions
were made at the outset. The first is that the attitude errors Ex’ Ey, EZ about
the IM body axes are the integrals of the total gyro drift rates € ey, €,

about the corresponding axes. Thus, Equation (7.2.1) becomes

EJ (n+1) 1 At E (n)

€ (n+1) 0o 1 €5 (n (7.2.7)
vhere j = X, Y, or Z.
The observable in this case is simply the attitude error EJ (n+1) measured with

respect to the PGNCS. Thus, Equation (7.2.2) becomes

(n)
(B, mI=[1 0] [? | +8En)
J e. (n) (7.2.8)

where J = X, Y, or Z.
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If a linear filter such as (7.2.3) is used for updating the estimate of gyro

drift rate and attitude error, we have

'~ -~

E. (n+l 1 At E. (n)

Q - -
J | J A (£, (n+1) - E;(n) - e, (n)) (7.2.9)

ej (n+l 0 1 eJ (n) Q

Y

2

For the IM AGS inflight gyro calibration, the first step performed is to
compute the PGNCS direction cosines from the PGNCS Euler angles ep, wp’ wp as
shown in Equation (7.2.10)

= |
allD cos vp cos ep
85p = sin wp
a = - cos ¥ sin 6

13D P p

a = sin ¢ sin * cos A_ + cos sin 6
31D o p p 29 p
= - sin cos
832D %5 p
a = =sin sin ¥ sin 6_ + cos cos §
33D o p 5% Tp 23 p (7.2.10)

These 6 direction cosines define the position of the X and Z body axes in the
FGNCS, and will be used to compute the attitude errors for the gyro calibration,
except during the first cycle through the calibration equations. During this
cycle, the AGS direction cosines are set equal to the FGNCS direction cosines
with IMU align equations.

During each subsequent cycle through the calibration equations, the vehicle
attitude errors are computed from the AGS and FGNCS direction cosines as shown
in Equation (7.2.11). These attitude errors

E = - Y, " Zp=-layaqy + a8+ 8,3833p]

vy~ 5% H

z Y, X = las1817p * 8p0B10p * 323313D]

=
{1

- [331a11D + 835810p * 333313D]

o]
"

(7.2.11)
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as computed are the sines of the negative angle drifted about each axis.
gince these drift angles are small, the compensation corrections are updated

as shown in Equation (7.2.12).

1
Ki = Kl K%h Ex
1
Ké = Kg + K%u
Kil Kil + K (7.2.12)

where
<, &, :
l”K6’ 11 are the X, Y, Z gyro compensation constants.
K%h is the compensation correction gain, and equals
2 x 107,

Small alignment corrections are also computed based on the attitude errors and

are the following equations:

1

= %33 Bx
va = K33 fy

A(Y:KlE
zA 33 72 (7.2.13)

where
fa}
AaxA’ AayA, @, are alignment corrections about the

X, Y, Z body axes.

Kl is the attitude correction constant, and at present has the value of 0.08.

33
The calibration at present is performed at a 2-second cycle rate. The
effective gains for the calibration are 1073 for K;h and 0.08 for K%3 as the
alignment corrections are applied once each caliﬁration cycle, and the com-
pensation corrections are applied each 20 mseconds.
The transient response for this filter is shown in Figure 7.2, and con-

verges to the desired value in approximately 200 seconds. However, this
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transient response curve does not include the PGNCS quantization noise or the
AGS quantization errors which cause a delay in the calibration response as
well as an oscillatory type of error in the steady state value.

7.2.2 Accelerometer Inflight Calibration

The AGS accelerometers are calibrated during free fall conditions for
bias errors. That is, the outputs of the accelerometers are accumulated for
76 seconds, and are divided by the time interval to obtain the accelerometer
bias error. Since the accelerometer bias corrections are used every 20 mseconds
in feet per second, the accelerometer bias corrections K}9, Kél, and K§3 are
computed using the gain shown below in Equation (7.2.14). This gain constant
is 0.020/76 which converts the accumulated velocities to the amount of feet

per second error the accelerometer bias will cause in 20 mseconds.

1 -k
Ki9 Kl9 + 2.63158 x 10 s./wx

Kl

Kl + 2.63158 x 1o‘h SAVy

21 21
1 -b
= . 8 10 AV
Xo3 Ké3 + 2.63158 x Sav, (7.2.14)
where
Kl Kl Kl are the X, Y, Z accelerometer compensation
19) 21) 23 b4 ’
values

SAVx, SAVy, SAVz are the X, Y, Z accelerometer outputs

accumlated for 76 seconds.

7.2.3 Gyro Lunar Calibration

The equations mechanized for the lunar calibration are exactly the same
as the equations previously described in Section 7.2.1. The only difference

between the two calibrations is that angular increments which compensate for
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the lunar rotation rate are included in the transformation matrix update

computations. These equations are approximate corrections, and are shown

in Equation (7.2.15).

1
Y% rem = Aax rem K56 812

1
Aryy rem AQ’y rem K56 820

Kr

Aaz rem sz rem = 56 %32

where

Kéé is the product of the lunar rotation

(7.2.15)

rate and

20 msecond compute cycle period AM At (Radians)

a12’ a22, a32 are the IM AGS direction cosines which

define the inertial Y axis with respect
to the Xb, Y, Zb body axes.

g rem
body axis. This variable has a
+ 2'13

is the angle increment rotated about the g

radians with a quantization of 2~

th

range of
30

radians, and is used to accumulate small angular

increments to increase the accuracy of the IM AGS

direction cosines. These angle

only used when they exceed 2_16

When the IM is on the lunar surface, it is aligned to a

increments are

radians.

selenocentric

coordinate system with the X axis along the lunar local vertical positive

outward from the lunar center, and the Z axis obtained by crossing the unit

angular momentum vector of the CSM orbit with a unit vector along the X axis.

The Y axis is also defined by Y = Z x X and is approximately aligned with

the unit angular momentum vector of the CSM orbit.

The equations used to compensate for the lunar rotation
for the Y axis to be collinear with the lunar rotation axis.
CSM orbit may be inclined to the lunar equator by as much as

rate compensation may be in error by 0.1 degrees per hour.

rate were designed
However, since the

10 degrees, the lunar
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7.3 Navigation
7.3.1 Direction Cosine Updating Algorithm

In this section, the derivation of the algorithm used to update the
direction cosines (Figure 3.4, Reference 1) is presented. The strapped down
system used in the LM/AGS consists of three gyros mounted on the body of the
IM. These gyros measure the integral of the turning rate about the three
axes. Unit vectors along these three mutually orthogonal axes are denoted
by Eb’ Y., gb respectively.

The navigation equations operate in a selenocentric inertial coordinate
system with unit vectors X, Y, Z respectively. In order to maintain know-
ledge of the IM attitude in the inertial coordinate system a matrix A of

djrectioﬁ cosines is maintained. Thus, A is defined as

- . . ﬂ B ]

XX x-Y X -z 811 %12 %13

A = _Y_b X Y o Y .Y_b *Z =183 85 83
ERETE-DE T B e R (7.3.1)

Rotations about the vehicle body axes must be reflected in a change in the
A matrix.

The derivative of A is given by

A= oA (7.3.2)

where
—
0] m -1 ]
Z y
; W = -1 0 W
Z X

b«ny 0 0 _ (7.3.3)

and ws my, w, are the rotation rates about the X, Y, and Z body axis respectively.
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' t
Assume now that the matrix A is known at the (n-1) h computing interval.
Then A at the nth computing interval can be obtained as the result of a

Taylor series expansion about An Thus,

1

. 5 1"
A=A +A  B+x A M HEA a3 e . (7.3.8)

AT § o

Upon substituting 7.3.2 into 7.3.4, there results (up to third order)

3 e
. A . )
An = [# + oMt + % Amg(w + u?) + —%— (0 + 2dw + wb + ug):kn-l (7.3.5)

where I is the identity matrix

Ot is the time between the (n-l)th and nth computing points.

h
The gyro outputs at the nt computing increment are

nit
by, = I w, dt i=x 9,z (7.3.6)
(n-1)4t

If (7.3.3) is integrated as in (7.3.6), there results the matrix

0 b, ~tor,
by=|-tw, =~ O b (7.3.7)
Oy Loy 0
v X
L. i
Now Ay is expanded in a Taylor series (to third order) and
o =t + 2 A° + 7 e (7.3.8)
Substituting 7.3.8 and 7.3.7 into 7.3.5 yields
N ) 3,7 .
An=[I+Acy+—§—' + 15 (ow - wb + 2w )JAn-l (7.3.9)

if terms on the order of Amh and higher are neglected. The algorithm used for

implementation in the guidance equations (Figure 3.4) is

- 2" )
An—[l +Ay+—é—JAn_l (7.3.10)
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s0 that the error up to terms of fourth order in &t is
. . 3
T (o - o) w A3
A, = [ 12 + -Eri%n-l v (7.3.11)

To counter computer round-off, orthonormality corrections are derived

as follows. ILet a Because

1
of computational errors, these vectors are not exactly of unit length nor

= (all’ a5 313) and a, = (a3l’ 830 333).

orthogonal to each other. First compute first order corrections E1 and E3

so that a and a. are pormalized without a change in orientation; i.e.,

1 3
(1 +E)al=1 (7.3.12)

Squaring both sides,

(1+E) g -8y =1

(7.3.13)
By g (l-8 - a)
Likewlse,
Bymg (1 -8y ay) (7.3.14)

To gain orthogonallty, 2 and 53 are rotated away from each other in their plane

through equal angles until they are perpendicular to each other.

~ — — before adjustment
after adjustment
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Hence, the first order orthonormality corrections to a, and a, are:

1 3

8 +—8& +Ea -5a,

(7.3.15)
83 e— 83 * Bag - Biggy

Vector & = (a21, 855) a23) is then computed as a, = 23 X 8.
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7.3.2 Derivation of the Radar Filter Equations

This section contains a derivation of the radar filter equations. Unless
indicated, the symbolism in the derivation does not correspond to that of the
flight equations.

DYNAMIC FILTER EQUATIONS

Consider the vector difference equation which represents the actual dynamics

of a system.

Xn+l = U(tn+l’ tn) Xn *a, (7.3.16)

where

Xn is the state of the system at time tn

U models the dynamics of the system

q, is noise added to the system at time tn with the properties

T T
Elq ] = 0; Elq q,”] = O for n £ 35 Elqq "] =@

J

n

T signifies transpose and E the expected value operation.

If a measurement
y*=MX +S (7.3.17)

where Sn is noise with the properties

~

. T — * T —
Ersn] = 0; E[SnSJ 1] =0 forn £ J; E[snsn ] = s,

A

is made at time n then the best, linear, unbiased estimate of Xn denoted by Xn

is given by
X, = Byn + Cnxn/n-l (7.3.18)
where -
T T -1
B =PM {MnPnMn + sn} (7.3.19)
c,=TI-BM . (7.3.20)
Xo/n1 = Uy B 0) X (7.3.21)
T
b= UnPn-l/n-l Up * % (7.3.22)
Pn/n = CnPn ' (7.3.23)
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In words, Xn/n-l is the value of the state at time n as obtained from the value
of the best estimate of the state at time n-1. Xn/n-l is sometimes called the
"a priori" estimate of the state at time n. Pn/n is the value of the error co-
variance matrix after the measurement and "a priori" estimate have been combined
to form the best estimate in and Pn is the value of Pn-l/n-l updated by the
dynamics through time 4t = tn - tn—l'
IM FILTER

In constructing the IM filter several assumptions are made. First, the
problem can be considered as a one dimensional problem with the resultant filter
weights applying to each of the three dimensions. Thus, denoting (in one
dimension) p for position and p for velocity, the difference equations of motion

for each vehicle (IM and CSM) can be expressed as

. 1 2
P,y =P, * P, At + 58 At (7.3.24)

L Ph ™ 8y bt

a, is the acceleration due to gravity at time tn.

Corresponding to Equation (7.3.16), the state vector is taken to be

bo - P (7.3.25)

where [, c designate IM and CSM respectively. It 1s assumed that P. and pc
are known exactly. Substituting (7.3.24) into (7.3.25) yields

At
1 At (aL,n - ac,n) 5
X = Xn + 4Ot

0 1 & .n " % ,n (7.3.26)
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If it is assumed that gravity acts the same on each vehicle, this equation reduces to

1 at]
X 1= X (7.3.27)
0 1]
Corresponding to equation 7.3.16 then
1 At
ult, t 1) =U (8t) = (7.3.28)

Since gravity does not act the same on each vehicle 9, is taken as noise with

covariance matrix (in the nomenclature of the flight equations)

29 0
Q = _ (7.3.29)
Ko At

10

The term Kio At is an experimentally determined term representing noise on

velocity and 29 is used to maintain the matrix Ph (see equation T.3.22) positive
definite (29 is one quantum of the element Pll of Pn). This essentially means that
Pll is rounded upward rather than downward. From equation 7.3.22 then, the terms of
Pn are given by

2 9
Pll = Pll + 2 P12 At + P22 AtT + 2

Pl,=Pp,+ Py, Bt (7.3.30)

Pop = FPop * Kjo ¢
The measurement used is that of relative positibn of the IM and CSM only so that
y‘r’(l' = [1 0] Xn + Sn (7.3.31)

and
M=[10]
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It follows from Equation (7.3.19) that
P
11
Pll + ’§n
B =
n P12
P +'§ (7-3-32)
L 11 n |
and from equation (7.3.20) that
pone P «amey
1 - 1 0
Py + 5
Cn =
P12
Pll +‘3£ l|_
- (7.3.33)

Following the nomenclature of the flight equations, let

2 _ _ 352 3
of = P+ 5 =Py F KR KT (7.3.34)
where R is the relative position of the CSM with respect to the IM.
Then P
W, = 2L
12 (7.3.34)
W = P12
2 2

The terms K% and K3R2 model the variances of the radar measurement errors.

3
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Rearranging equation (7.3.18) yields
X = Bn[Mn(xh - xn/n_l) + sn] + I xh/n_l (7.3.37)

The term multiplying Bn is the difference between the actual measurement and what
the measurement was expected to be. This term is denoted here by 6r (a scalar).
It should be noted here that even though a simplified model is used for the radar
filter, the term 6r is obtained as the difference between the radar measurement of
range and the navigation estimate of radar range (using the lunar spherical
gravitational model). Substitution of the terms in equation (7.3.37) yields

~

P
>

n Wl or + R3n

p,_,n w2 or + p,_’n

(7.3.38)
Since the same weights are used in all dimensions (6r will be three dimensional)

equation (7.3.38) is expanded to the vector flight equations.

r

1t

Wléz + T

L=wgbr+ ¥ (7.3.39)
The updated value of the covariance matrix is obtained directly from equation
(7.3.32) and yields

Pop = Fop ~ WoPp5

Pio = Pp 1 -w)
Pi, = Py (1 - wl) (7.3.40)

In the radar filter, two different values of wl (denoted by Wl and Wi) are shown.
The reason for this is because the radar information is not used at the time it
is received, but rather at a time when the range measurement has been inserted

into the computer via the DEDA. Thus, the current values of position and velocity
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are being updated based upon radar information valid in the past. Therefore,
this radar information should not be weighted as much at the current time as

it would have been if used immediately. To see how this weighting is changed,
consider how the IM position vector is propagated assuming the filtering was done
at the time the radar measurement was taken. Denote filtered quantities of
position and velocity by ; and i respectively. These quantities are obtained

in equation (7.3.39). ILet the subscript, n, denote the nth 2 second computing

increments. Two seconds (1 computing increment) later the estimated value of r

would be

- -

1 =5t 2 Y, (7.3.41)

or (utilizing equation 7.3.39)

i

£n+l Wléz + En + 2 Xn + 2 w2 EE

]

ro+2V + (W +2W) br (7.3.42)

If no filtering had been done, the value of r

r ., would have been (approximately)

Tv1 =yt 2y (7.3.43)

where the uncapped symbols denote unfiltered quantities.
Therefore, letting Wl = Wl + 2 W2 it is seen that the filtering can be accomplished
when the range measurement is entered if Wl is updated every computing increment
and if equation (7.3.42) is valid. This equation becomes invalid after a period
of time (not completely determined yet) and thus it has been recommended that the
radar range be entered into the computer within 30 seconds of taking the radar
measurement.,

It should be noted that if only 2 or 3 radar points are taken, the velocity
estimate of the IM may deteriorate. For this reason, it is also recommended that
at least 5 radar points be used. These restrictions are to be examined in a

future analysis.
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7.4 GUIDANCE
7.4.1 Attitude Error Commands
In this section the derivation of the attitude steering errors Ex’ E, Ez

y
i1s presented for the rendezvous steering mode of operation and for the acquisition

steering mode of operation.
RENDEZVOUS STEERING
The thrust direction is given by

=% K8—b Kﬁb (7.4.1)

The constants K$ and Kg produce a prescribed thrust offset with respect to the

X-body axis. Steering is accomplished by rotating the IM about an instantaneous
axis given by Et X ZD where Zb is the desired thrust direction. Note that the
magnitude of the cross product above equals the angular error to be steered out.
The pitch and yaw errors, EY and EZ are computed by scalar multiplication of the
cross product with Y, and éb’ respectively.

p
Hence,

By = (%, % %)

(X, x X)) * X, (7.4.2)

=
I

»

"
g
g

p = G xX) " 7

(7.4.3)
which ylelds

-z“b.-)—(D+K’I;QSb'-)SD) (7.4.4)

=Y Xy - Ky (% ¢ Xp) (7.4.5)

H‘FJ

E

The above pitch and yaw equations are used to steer the APS. For the DPS
or RCS, the K# and Kg terms are.dropped because these engines are assumed to
thrust along the IM X-body axis.

The Ex command is

E, = - W :gb-Jl‘ (7.4.6)

X —C
When Jh is zero, the IM Z-body axis is driven parallel to the CSM orbit plane.
A positive numerical value of - Hc * éb - Ju will rotate the vehicle in a right
hand sense about the + X-body axis.
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JLL is entered in degrees as the desired IM orientation about the X-body axis.
The DEDA conversion routine multiplies by the appropriate scale factor to convert
the angle to radians. The radian value used is the desired value that the Z-body
axis makes with the CSM orbit plane. The error in this approximation is given
in Table 7.k4.1.
Table 7.L4.1
Error in E_, Made by Using Radian Value

X
of J as Desired Value of a

32
Error in Ey (Degrees) Value of Ju (Degrees)
N 20
1.6 30
3.8 Lo
11.0 50
32.7 57.3

Inputs such that the Jl+ radian magnitude is greater than one would cause continual
rotation of the vehicle about the X-body axis. In practice Jl‘t inputs should be less
than 40° for the sake of accuracy and to preserve a safe margin of gain in the EX
control loop.

ACQUISITION STEERING
In this mode the Z-body axis is to be pointed in the direction of the CSM.

Steering is accomplished by rotating the IM about an instantaneous axis given by
4 X Lyp

where ng is the unit vector in the direection of the CSM. The attitude errors

Ex and Ey are determined by scalar multiplication of the cross product with Eb

and Xb respectively. Thus
E

(X, x 2,) * Ly (7.4.7)
(T, x %) * By (7.4.8)

x = (& x%p) " X
y @b"_z‘bn) " Y,

E

]
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which ylelds
By =X " Zyp (7.4.9)
By =% "Lp (7.4.10)
The Ez command 1is
E, =¥ X% (7.4.11)

which orients the X axis parallel to the CSM orbit plane. If the CSM is ahead of
the IM the X-body axis will be above the local IM horizontal plane and if the CSM
is behind the IM the X-body axis will be below the local horizontal plane.

ELLIPSE FREDICTOR SUBROUTINE
The purpose of the ellipse predictor subroutine is to propagate a known

position r and velocity !l around an elliptical orbit to obtain the position, T

and velocity, V., T seconds later (or earlier).

-2 ’
To derive the ellipse predictor equations consider equations (A.12) and (A.13)

of Appendix A in the form

r, = X P+ y R (7.4.12)
Vo= X P+ 3,8 (7.4.13)
where
X, = (cos E, - e) (7.4.14)
Y, = @ (l-ez)% sin E, (7.1.15)
. sin E2
o= T2 (7.4.16)
L cos E

o = luar(1-e%)F —=
2 (7.4.17)

e
n
]



To solve for g and g utilization is

1 where everytning is known. 1i.e.

r

\

=

MK

|
o]
-
v
+
§<
-
O

i
e
=
o
+
o
=
O

and Ty Xl’ X15 ¥q» il, 91 are known. Then

av]
i

_Q_:

Substituting equation (7.4.20) and

sy
SR !

I =% - X
Y1 7 Y1

. XYy - YN
N RSt SRR AT |

Iy - W

-1 11
W Y%

% -4hx
[ e el
X9 - lel
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made of these same equations valid at the point

(7.4.18)
(7.4.19)

(7.4.20)

(7.4.21)

(7.4.21) into (7.4.12) and (7.4.13) yields

- - -
Yo*1 ~ *oh

I "I x - y.X
| *1Y1 T V1%
Yo%y - Fo¥]

LY x7. -y.x
| X1Y1 T V1%

= fr; + &V (7.4.22)

<3
¥

= fr, + &V, (7.4.23)

Substituting equations (7.4.1Lk), (7.4.15), (7.4.16), and (7.4.17) with appropriate
subscripts into (7.4.22) and (7.4.23) yields

2}
it

r
i

T + 2

1

3/2

Ju

%— [cos OE - e cos EI] (7.4.24)

(sin AE - AE) (7.4.25)
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: S sin AE
£ i/ T - e cos B, (7.4.26)
o rl 2
Cos AE - e cos E2.
g =
1 -e cos E
2 (7.4.27)

where AE = E2 - El and T is the time to go from point 1 to point 2. Quantities

such as o, r,, € COS El are readily computed from the known quantities r and Vl'

In the above equations there are two unknown quantities AE and E2. This can be

reduced to one unknown AE by the following:

Cos E

o Cos (E2 - E

1t El) = Cos (OE + El)

Cos AE Cos E. - Sin AE Sin E

1

1 1
Then f and g assume the form
F = Yo Sin AE
- Jo T {1 - e Cos E; Cos AE + e Sin E; Sin AE) (7.4.28)
1
Cos OE - e Cos El Cos AE + e Sin E1 Sin AE
g =

1 -e 00s‘i1 Cos AE + e Sin E, Sin AE (7.4.29)
Equations (7.k.24), (7.4.25), (7.4.28), and (7.4.29) are the equations utilized
in the ellipse predictor subroutine on Figure 3.15 of Reference 1.

To obtain AE use is made of Keplers equation

T =

Sl

[E2 -E, -eSinE, +e Sin El] (7.4.30)

Substituting for Sin E2 the terms Sin AE Cos El + Cos AE Sin El yields

nT = M = AE - e Cos E; Sin AE - e Sin E, Cos AE + e Sin.El (7.4.31)
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or

M - AE + e Cos E, Sin AE + e Sin E; Cos AE - e Sin E, = 0 (7.%.32)

This is a transcendental equation and is solved by using a Newton Raphson
technique. That is, if an initial guess is used for the AE {the unknown) and
substituted into equation (7.4.32) the equation will not equal\zero but some other

value, say x The next value tried for AE is obtained from the equation

11°
X
AE = AE + '}—(E
12 (7.4.33)
where dxll
[ S ——— - C i E i . .
X5 = - T5E 1 - e Cos El Cos AE + e Sin 1 Sin AE (7.4.34)

The convergence of this iteration depends upon the eccentricity of the orbit and
the initial guess for OE. For the trajectories under consideration in the IM
program and if the initial guess of AE is chosen to be M then a sufficiently

accurate answer for AE is obtained in two passes through the iterator.



05952-6076-T000
Page 89

7.4.3 Pitch Steering Equations for Orbit Insertion

A derivation of the constant r pitch steering law is given below. A similar
derivation can be followed for the yaw steering.
The final radial position at orbit insertion, Tp, Can be expressed in terms

of the present radial position, r, and the time to burnout, TB, as follows:
2 1 e :

» L.
re =T+ & T4 5T.Tp + 3 rdTB3 (7.4.35)

where fA is the stored value of the present IM velocity .

Differentiating equation (7.4.35) with respect to T. yields

B
. . . 1 - 2
to= )+ rdTB + 5 14Ty (7.4.36)

Solving equation (7.4.36) for ?d gives

P T
g =(Fp - £y - 5 TgTp7)/Ty

(7.4.37)
In equations (7.4.35) and (7.4.36), the only unknowns are ?d and ;a.
Solving equations (7.4.35) and (7..4.36) simultaneously for ;a yields
T
oo 12 . . B
Tq = 73 [(rf tE)s 4T - rf] (7.4.38)
B
Taking the differential of equation (7.4.38) yields
T
s 12 B . .
bry = Erg-[E— (Arf + ArA) + Or - Arf] (7.4.39)
B
In equation (7.4.39), Aif = AiA =Ar =0
So,
12
brg = =3 brg (7.4.%0)
T
B
But

5
bro =1y - 077 - 4J (7.4.41)
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where
J16 is the desired altitude above the lunar surface at orbit insertion
JS is the lunar radius at the landing site.
S0
- - 12 16 5
g = Tq + =3 (rg Jo - J) (7.4.42)
TB

The expression for ?d gives the desired total radial acceleration. The desired

radial thrust acceleration must compensate for gravity and centrifugal force.

Thus K2 V2
SN SR S (7.4.43)
a  “a r2 r T

The computed value of r, (and also §d) 1s limited so that position control by

the AGS decreases as VG decreases. This i1s desirable for two reasons:

(1) Aas Vc-ﬂ 0, vehicle attitude would otherwise swing rapidly near cutoff
in the vain attempt to null trivial altitude (and yaw displacement)
errors

(2) The equations are specifically designed not to return to the nominal
trajectory in the event of highly perturbed aborts. The vehicle will
directly achieve the desired velocity without expending propellant
which would otherwise be required for the return to the nominal

trajectory. The desired value of if is computed as a function of rf.

*f 9
Slope of t, = Kt (Kg - rf)
Ké -Kt Untt 23 ¢ b, < Kg
Pdao (for lunar mission)
To3 ™ ‘ < T

Function of ff vs. r,

FIGURE 7.3
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The desired value of yaw velocity at burnout (component perpendicular to CSM orbit

plane) is zero.

When the AEA indicated altitude is less than le feet above the landing site
and the indicated altitude rate is less than J22 fps, then the AGS will command
vertical thrusting. (This logic provides for the vertical rise after lunar lift-
off and also for emergency abort recovery to avoid impacting the lunar terrain.)
Otherwise, the steering proceeds toward the desired burnout velocity and position.

The derivation of the time to engine burnout T, is based on the "rocket

B
. equation”.
T T
f f
= _ F (7.4.44)
VG = I aTdt = i E;—:fﬁf'dt
where
VG is the velocity-to-be-gained
& is the thrust acceleration
F 1is force exerted by the engine (assumed constant)
m_ 1is the initial fuel mass
o

is the mass flow rate (assumed constant )
is present time

p ig the time at orbit insertion

The solution to equation (7.L.LL) is

3 c He

VG' m - mt
— = 1ln (m—o——_—ﬁf) (7.4.45)

or

m_ - &T, = (m - ft)exp {_- VGQ/P] (7.b.16)
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Expanding the exponential term and dropping all terms higher than the cubic gives

Vg v§m2 Vgrh3
m_ - mTf = (mo -mt) (1 - +

o] F 2F2 gF3

)

Solving equation (7.4.47) for Tf gives

(mo - ﬁlt)

m_ - 1t ' m - mt
2F2 6F
But
TB = TF -t
and
a = F
T m - mt

vG m 2 ﬁe
T, = — (1 -V + V., =)
B~ a G 2F G 2
L 2
L m L m
If X, = - oF and K3 = 5;5
\'/
G L L 2
TB = 5; (1 + KQVG + K3VG )

Notice that F/ﬁl = C¥, the effective exhaust velocity of the IM engine. C¥* is

* - = 3 .
related to engine ISP by the formulase C geISP where g_ = 32 174

(7.4.47)

(7.4.48)

(7.4.49)

(7.4.50)

(7.4.51)

(7.4.52)
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7.4.4 Derivation of the Error Function for CSI Calculations

The purpose of the CSI calculations is to determine the appropriate C3I maneuver
such that the desired line of sight angle between the IM and CSM is achieved at
TPI time. The "natural” error function to be minimized in the iteration is the dif-
ference between the desired line of sight and the line of sight achieved if the
trial CST maneuver was performed. Computation of the predicted line of sight at
TPI time is expensive from the standpoint of the number of computer steps required
because in addition to the shuffling of information in and out of the ellipse
predictor subroutine a coordinate transformation would have to be performed. A
simple alternative solution has beén developed based upon the trigonometric relation-
ship involving the desired line of sight, the semi major axis of the CSM trajectory,
the differential altitude (Ar) between CSM and IM orbits during the coelliptic coast
trajectory and the central angle between the IM and CSM vehicles at TPT time.

What is actually done is the following. Based upon the calculated value of Ar
and desired line of sight angle J2 at TPI time, the desired central angle between the
IM and CSM at TPI time can be determined. Denote this angle by GD for the moment.
Based upon the central angle between the IM and CSM after the CDH maneuver and the
known time until the TPI maneuver, the actual central angle A8 between IM and CSM
at TPI time can be determined. The error function is then computed as the absolute
value of the difference between GD and A8. The first part of the derivation is the
computation of GD or -b3 in the nomenclature of the flight equations.

The angle b3 1s the negative of the desired relative central angle of the CSM
with respect to the IM at TPI. This angle is a function of Ar and the differential
altitude in the coelliptic orbits. The figure below shows the relative positions
of the IM and CSM at TPI.

From the law of sines

r, osin (5-3°-0) cos(d® +0) :
T~ = > - (7.4.53)

TE  sin (g-+ J2) cos J
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FIGURE 7.4
TPI GEOMETRY

For an elliptical orbit (see Equation A.9 in Appendix A)

r=«oa (1 - e cos E) (7.4.54)

Substitution in equation (7.4.53) gives

(yL(l - e, cos E_)

L
cyEYl - ey €os Ep

2
= COos GD - tan J sin QD (7-4-55)

where the subscript L refers to the IM and the subscript E to the CSM. Since
the orbits are coelliptic

O'LeL cos EL = orEeE cos EE (7.&.56)

at TPI.
The differential altitude Ar for the coelliptic orbits is given by
A‘r_: o, - &

L (7.L.57)

or
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The CSM orbit is very nearly circular so
ep €OS EE << 1 (r.h.58)
Also assume that
oy << 1 (1.4.59)

Substitution of equation (7.4.57) in equation (7.4.55), expansion of the terms

(1 - ep €Os EE)-l and cos 0 in series and retention of the first two terms of

each series leads to

Ar
(1 - ;—) (L -e, cos E_ + e, cos EE)

E L L E
~ 1l - 912) - (tan J2) % (r.%.60)
Assume .
€L, = °g (7.4.61)
But
E. + E,-E
cos E, - cos B = - 2 sin (-LLE—EE) sin (—ELET-L)
eD
~ - 2 sin (EE) sin (5—)
~ - sin () 8y (7.4.62)
Then 6 2 5
Ar D
(1 - EE) [1 - (eE sin EE) BD] ~ 1o~ - - (tan J7) 9D (7.4.63)
or
0 2
br 2D . 2 4
1 - EE - (eE sin EE) GD =1--3 (tan J) 8 (7.4.64)

Solving equation (7.L.6L) for 6, leads to

Ar
o
8, = - E
D=8, > "
7+ tan J° - eg sin EE (7.4.65)
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For ep < ,05 and AOr < 40 nm, ignoring the e sin EE term will cause a TPI timing
error of no greater than 100 seconds. For circular orbits, the term has value zero.
Hence it is dropped from the computation of GD.

A first order approximation for BD is

a Ar
D (“E tan Je) (7.4.66)
Hence GD can be expressed as
Ar
.o
E
o = &7 5 (7.4.67)
-é—(;————-———-z—+tanJ
E tan J

The approximation is usable because GD << tan J2.

Let
b3 = - GD
bh = tan J2
b5 = - Ar/ﬂE

then equation (7.4.67) reduces to

3 b5 (7.4.69)

The next part of the derivation indicates how the relative central angle between IM
and CSM at TPI time is obtained from the relative central angle between IM and
CSM at time of CDH.

The true anomaly, 9, can be expressed as an infinite series in the mean

anomaly M (see Appendix A)

8 = M+ 2e sin M + higher order terms in e (7.4.70)
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The error function is defined as the difference between the desired relative
central angle QD at TPI and the computed relative central angle, 46,

The relative central angle may be written as

A =06, -8, - - -
L~ % " O * 98y - 9o - 8% (7.4.71)
where
66, = 6. - B
L L LO (7.4%.72)
910, eEO are respectively the IM and the CSM true anomalies at CDH. eL, eE

are respectively the IM and the C5SM true anomalies at TPI.
by = (eLO - eEO) + (ML - ML) + 2e; sin M, - 2e; sin Mo+ ..
- My + My, - 2ep sin My + 2eq sin My + ..., (7.4.73)

The terms in e and higher (not actually shown) are dropped. Since

M- Mg =0Ty
Mg - Mo = ngtg (7.4.7h)
it follows that '
A8 = (eLO - eEO) + (nL - nE) TE

+ 2eL sin ML - 2eE sin ME

- 2e, sin Mj + 25 sin Mp, (7.4.75)
For circular CSM orbits, the terms containing eE and eL are zero. For non-
circular orbits the e and ep terms contribute significantly. In an early formul-

ation of the CSI equations, all terms shown in Equation (7.4.75) were provided.
However, to accomodate other functions, later requested, it was agreed not to apply full
capability in the CSI equations for handling unexpectedly eccentric orbits and large
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coelliptic differential altitudes at the same time. To this end, the assumption is
now made that at TPI, the angles ML and ME are essentially the same, as are the
eccentricities. This assumption is based on the fact that for IM/CSM 10S angles
greater than 20 degrees, the desired relative central angle at TPI is less than

5 degrees when the coelliptic differential altitude is less than 4O nautical miles.
L sin ML and -2eE sin ME are dropped. The angles MLO and MEO are
then approximated by the eccentric anomalies ELO and EEO'

Thus, the terms Z2e

A further approximation is made as follows:

2r T 2r r
se. sin E.. - 2e. sin E. . = —20 0 - 10 10

E EO L LO
WJK? g W/Ki L,

JYE . .
~ -2 ;5— (rLO - rEO) (7.4.76)
1

where

T’ TrO are respectively the radial distances of the IM and the CSM at CDH

iLO’ fEO are respectively the radial velocities of the IM and the CSM at CDH
Ki is the lunar gravitational constant
oy, g afe respectively the semi-major axis of the IM orbit and the CSM orbit

The cost function is computed using equation (7.4.76)

Let
80 " %m0 = %
te = T
tp = Tgo (7.4.77)

and the desired relative central angle between the IM and the CSM at TPI be -b3,

then the cost, C, is =
C = \b3 + 8, + K§8 (if - iB) + (nL - nE) Tc‘ (7.4.78)
where

Tc is the difference in time between the CDH maneuver and the TPI maneuver

targeted.
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7 /
where K§8 is the nominal value of -2 /;g (Note that ~= equals the CSM
E
1

circular velocity magnitude).

o

For multiple orbit rendezvous in eccentric orbits (say e = .03 and Ar = 40 nm),
the K§8 term provides a correction which is not trivial. For eccentricities less
than .015, the cost function is accurate for Ar magnitudes of 100 nm or less. If
the eccentricities become larger, the allowable Or magnitude should be decreased

accordingly.



05952-6076-T000
Page 100

7.4.5 Derivation of the Equations to Obtain Coelliptic Orbits
At the coelliptic burn point (CDH), the IM orbit should be adjusted

such that the following conditions are true after the CDH burn.

o = o - Or (7.L.79)
o e = alp (7.4.80)
6, ~ 9 (7.4.81)
where
g ep are respectively and the semi-major axis and eccentricity

of the CSM orbit

o , € 8are respectively the semi-major axis and eccentricity

of the IM orbit

Ar is the differential altitude between CSM orbit and IM orbit
measured along a radial line through the IM position at CDH

0. , 0. are respectively the true anomalies of the IM and CSM orbits.

L’ "B

If , the radial rate of the LM, is chosen properly, then conditions
(7.4.79) and (7.4.80) are enough to satisfy (7.4.81). To see this, let E
be the eccentric anomaly. For Keplerian orbits (See Appendix A)

1 'E
cos = — [l - -—] (7.4.82)
B Lo
r
1 (Mg
cos E, = =— [} - — 7.4.8
LT e 7 ( 3)
where
T Ty are respectively the radial distances of the CSM and the LM

EE’ Ek are respectively the eccentric anomalies of the CSM and the
LM orbits
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Substituting (7.4.79) and (7.4.80) into (7.4.83) and noting that

r, =7rp - Or ylelds
o - T, op- Or - rp + Or ap - Tg
E
cos E, = e = e = e = cos Ej (7.4.84)
or
E, =+ Ej ' (7.4.85)

Thus, if ¥ 1s made to have the same sign as fE’ then E = EE.

The relationship between @ and E is given by equation (A.7)

. :
tan = = \/%—f—-:— tan -g‘- (7.4.86)

Thus, for small values of e the true and eccentric anomalies are
essentially the same and hence the coelliptic maneuver aligns the IM's
orbital line of apsides with that of the C3M.

At the CDH point, both r, and o are known, so the total desired
velocity, Vf, can be obtained from the relation

AR CEr (7.4.87)

where

Ki is the lunar gravitational constant

The desired LM altitude rate is obtained by considering the equations

for = Ixiai e, sin E (7.4.88)
fErE = ‘/KiaE eq sin Ep (7.4.89)

Dividing equation (7.4.88) by eguation (7.4.89) yields

fL re Kial e sin E
e e sin E, (7.4.90)
E L KiaE E EE
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Since
E = Eg (7.4.91)
T, o (7.4.92)
and
nLE
& & - (7.4.93)
then
L (7-4.9)
—= T k.9
R Klz_aé
The mean orbital angular rates are
K?. A
nL = —"3 (7"""95)
oy
(7.4.96)
It follows that:
o +
T Tnp E (7.4.97)
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7.4.6 Derivation of p-Tterator Equations

The purpose of the p~-iterator routine is to determine the trajectory that
passes between two points (55, ;T) in a given time T. With this information
the impulsive velocity required to achieve this trajectory when the LM reaches
the point 55 can be determined.

For this discussion, the initial point will be designated with the symbol i
and the final point with the letter f. The p-iterator function is to drive
the value of Tp in Kepler's equation (7.&.98) to the desired value T.

1 .
te -ty = Tp = ;vaf - E - e(sin E, - sin Eiij (7.4.98)

To compute Tp, the quantities &E = Ef

be obtained. Several relations from the Appendix are rewritten for current

- Ei’ e s8in Ef, e sin Ei and n must

use.
r = o(l - e cos E) (7.4.99)
p=r(l + e cos E) (7.4.100)
1
gin E = % (1 - e2)Z sin © (7.4.101)
n = K§/°3 (7.4.102)
(7.4.103)

cos E = % (cos © + e)

OF is computed in the following manner which yields a solution that is

not indeterminate when e approaches zero

-1 sin OF .1 sin (B, - E;)

OF = tan = tan -—-—r-—---y
cos OB cos Ef - Ei

. tan'l siqAEr cqs fﬁ,- cos Ef sin El (7.h.10h)
cos Ef cos E1 + s8in Ef sin E1
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Substituting (7.4.101) and (7.4.103) into (7.4.104) yields

1

r.r
i p—s
1 1Y l‘eg {Sin (Q_p - Q,) ool Lot L wa

AF = tan® : (7.4.105)
— on (e Oi) + (e” + e cos 9. + e cos S,
2 . . 1
- e sin 6, sin Qi))
where in the notation ol the flight equations
sin (of - Oj) = c, (7.4.106)
e sin QF = X, (7.4.107)
e sin 6, = %y (r.r.108)
cos (@f - @i) =c (7.4.10"
e cos 6, = %Xy (7.4.110)
e cos 9, = X, (7.4.111)
Equations (7.4.110) and (7.4.111) are obtained directly from equation
(7.4.100)
Define I
Hl = TE;T (7.4.112)
and
r
U, = Th
= = TrJ (7.4.113)
Then
c, =y - U, (7.4.114)
c, =l -c (7.4.115)
2 l e Te
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The sign of <5 is the sign of the component along the y inertial axis
of (Wl . Wc) where

and

The following procedure is used to obtain x

or

Thus

LI}

W
-

=5 5%

(7.4.116)

= the CSM angular momentum unit vector.

3

e cos O, = e cos (Of -0, + Oi)~= cos (Of - Oi) cos O,

- e sin (of - oi) sin ©

i

The quantities e sin Ef and e sin Ei are obtained by substitution
in equation (7.4.101) and multiplication by e.

or

i %

f 2
e sin E, = = (1 - e)e sin o

X,

9

Te 23

f

(7.4.117)

(7.4.118)

(7.4.119)

(7.4.120)

(7.4.121)

(7.4.122)
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and

r 2
e cos Ei = = (1 - e2) e sin Oi
or
Xq = fl (1 - ee)éx
8 p 3
Thus
1

Tp is made to apyroach T by iterating on the parameter p. Two values
of p are used to obtain two values of Tp. With this information, the
partial derivative of Tp with respect to p is obtained. Succeeding

values for the parameter p are obtained using the Newton-Raphson formula

(T -T1T)
p=7p+
%
O

The actusl iteration control logic is shown near the bottom for

Figure 3.23 in Reference (1). counts the number of iterations

W
3
performed. When u3 > 2, two previous trial values of Tp are retained
'
as Tp and Tp, and the two previous trial values of p are retained as
1
p and p .

in the iteration scheme (equation 7.4.126). If b3 is less than 2K17

These quantities are used to compute the derivative required

(8 iterations), the iterations continue. If M3 is 2, the quantity 3, is
computed. This means that in each computation cycle, the partial deri-
vative is computed at least once. As the trial solutions approach the
desired soluti?n, large errors can ?e obtained in the quantity aT because
p approaches p and Tp apyroaches T . Thus, after the ?erivative has been
computed once (when w3 = 2), a check is made on ‘Tp - Tp}. If this number
If not, the last value of

The

is larger than 8’ the derivative is computed.
the derivative is used in the computation of the increment for p.

increment is computed as

Axp=(T-Tp)ar

(7.4.123)

(7.4.124)

(7.4.125)

(7.4.126)
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and Ap is limited to be less than 19 (524288 ft) in magnitude. This is done
for the following reason. When the iteration begins, the value of &4p could be
quite large because these initial quantities were obtained with just a guess
of the ultimate solution. If p changes too much, it is possible for the
scaling in the computer to be exceeded. In this case, no solution would be
obtained when an actual solution may exist. Thus, the magnitude of 4p is
limited.

When 2K17 iterations have been performed, a check is made of the final
solution against the desired solution. The difference between T and Tp is
checked against the quantity 2K20 (2 sec). If the difference is greater than
2K20, it is assumed the iteration has not converged. If less than 2K20, the
iteration has converged to the desired answer and the logic flow continues to
Figure 3.24 where the initial and final veiocities required to rendezvous are
computed.

Current design is to use eight iterations since there is ample time for this
number to be done in the 2-second computing interval. For the trajectories under

consideration in the IM program, the minimum that should ever be used is five.
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APPENDIX A

GENERAL DISCUSSION OF ORBITAL MECHANICS

This section contains a summary of the more important equations of
orbital mechanics used in the derivations in the preceding sectioms.
Derivation of these equations and detailed discussions can be found in
any of the books on Celestial Mechanics or Astrodynamics (e.g., References
5 and 6).

Consider Figure Al which depicts a vehicle in free flight above a
spherical attracting body which for our purposes is the Moon. The vehicle
fiies an elliptical trajectory with the position vector r and velocity
vector V both contained in the orbit plane. The vector normal to the

orbit plane defined by

h=r ng_' (a.1)

is called the angular momentum vector and the magnitude of h is the

angular momentum per unit mass. The center of the Moon occupies one
focus of the ellipse. The point of closest approach to the Moon is
called pericynthion and 180O from pericynthion is apocynthion, the point

of greatest distance from the Moon. The central angle between the
position of the vehicle and pericynthion is called the true anomaly

and is denoted by ©. The semi-latus rectum or parameter of the ellipse
is defined by

2
p= %— h = |h| (A.2)

where j is the gravitational constant. The velocity at any point
on the ellipse can be obtained from the relationship

Fau(2-2 | (8.3)

where

r=|r|

o 1s the semi-major axis of the ellipse
Eccentricity of the ellipse denoted by e is obtained from the relation

e =1-2 | (A.4)
o
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True anomaly times mass of the Moon

y Q@ W - Unit vectors describing orientation of the ellipse in
inertial space
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FIGURE Al
Elliptical Free Flight Trajectory and Astrodynamic Notation
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Another parameter of major importance is the eccentric anomaly E

obtained from © and e by any of the relationships

T 2 L
sin E = 5 (L -€e")2 sin® (A.5)
cos E = % (cos @ + e) (A.6)

E /1 - e Q
tan 5= [T+ tan 3 (A.T7)

and the quadrant of E is the same as that of @. From these quantities
the radius at any point on the trajectory can be obtained from either

p w(l - e°)

= 1l + e cos @ l1 +ecos @

r

or
r = o(1 - e cos E) (A.9)
Note then that the pericynthion radius 1s given by

= —L -
LeTye * o(l - e) (A.10)
and apocynthion radius by

I‘a = -l—g—e = Q/(l + e) (A.ll)

In the P, QW coordinate system shown in Figure Al, the position

and velocity vectors at any point 2 can be expressed as

1

r. = o(cos E, - e) P + o1 - e2) 2 sin E,Q (A.12)

-2 2
sin E o % cos E2
£+[w(l-e)] -
2

Q (A.13)

i = -V

These equations were utilized in the derivation of the ellipse

)

predictor equations.



The horizontal velocity of the vehicle at any radius on the
given by

v =l

h r

and thus the radial rate by

rad VP

h

Radial rate can also be obtained from the expressions

i'ﬂ\[% e sin E

z"-jEe sin ©
p

The period of the orbit (time to travel 360°) is given by

3
P-%Il-
»

and the mean orbital rate by

or
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orbit is

The time to travel from point 1 on an orbit to point 2 on an orbit

is given by Kepler's equation

1 .
t--ﬁ-[Ea-El-esinE2+esinEl]

Mean Anomaly, M, of an orbit is the central angle from pericynthion
transversed in time T if the vehicle were traveling at the mean

orbital rate n. Thus

M = nT
In terms of M and e, O can be expressed in serles form

0-M+2e'ainu+ge2 gin 2M + ...

(A.1k)

(a.15)

(A.16)

(A.17)

(A.18)

(A.19)

(A.20)

(A.21)

(A.22)
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