
IBM 1403-N1 Printer Controller

Design Report

Watson Capstone Project WCP07

Sponsor: IEEE Binghamton Section

2015-05-01

Revision: -

Submitted by:

Nicholas Hekman, Lead, EE

Alena Yampolskaya, COE

John Wiseman, COE

Faculty Advisor: Professor Jack Maynard

External Advisor: Tommy Lam

Client Advisor: Arthur Law

Program Manager: Professor Jack Maynard

Approved for public release; distribution is unlimited.

Submitted in partial fulfillment of EECE 487-488 / ME 493-494 requirements.

Thomas J. Watson School of Engineering and Applied Science

Binghamton University

Binghamton, NY

i

Executive Summary

Figure 1: Context Diagram

The IBM 1403-N1 line printer was introduced in October 1959, and could print up to 1100 lines

per minute (LPM). The Center for Technology and Innovation (CT&I), located at 321 Water

Street in Binghamton New York, has obtained a 1403-N1 printer and begun restoration. CT&I

intends to bring the printer to working order and gain the ability to print. The necessary control

components for the printer are not in place, so alternatives are being developed. This was the goal

of a previous Watson Capstone Project (WCP) effort, and was the goal of this team’s effort.

The printer utilizes 132 solenoid-driven hammers, which press paper into a spinning character

train. Paper is advanced using a hydraulic motor and tractor, which pull continuous form paper

between the hammers and character train. Hardware amplifiers were developed during the

previous WCP effort to interface with all inputs and outputs of the printer. CT&I has enlisted the

help of Triple Cities Makerspace (TCM) in scaling up and implementing the hardware solution

WCP developed. TCM has modified the driver board design to incorporate logic components (see

figure 1 above.) The redesigned hardware will accept timing and sync information from the

Timing Control Subsystem and use that information to drive the printer solenoids.

The Institute of Electrical and Electronics Engineers (IEEE) Binghamton section has sponsored a

WCP effort to produce a Timing Control Subsystem. The subsystem is responsible for

determining which hammer must be fired and at what time. This information must be

communicated to the hammer driver boards. The subsystem needs to accept user input specifying

the data to print. The subsystem is also responsible for interruption of 60V printer power in the

case of any error.

ii

Table of Contents

1 Problem Definition .. 1
1.1 Problem Scope ... 1
1.2 Technical Review .. 1
1.3 Design Requirements... 2

2 Design Description .. 3
2.1 Overview ... 3
2.2 Detailed Description .. 3

2.2.1 Interfaces ... 3
2.2.2 Host PC Application .. 4
2.2.3 Timing Control Board ... 5

2.2.3.1 POR Mode ... 6
2.2.3.2 Idle Mode... 7
2.2.3.3 Active Mode .. 8
2.2.3.4 Error Mode .. 11
2.2.3.5 PSS Interrupt ... 12

2.2.4 Hardware Safety Interlock ... 14
2.3 Use ... 15

3 Implementation .. 15
3.1 Timing Controller .. 15
3.2 Host PC .. 16
3.3 Hardware Safety Interlock ... 17

4 Evaluation .. 18
4.1 Overview ... 18
4.2 Testing and Results.. 18

4.2.1 Selloff Event One .. 18
4.2.2 Selloff Event Two .. 19

4.3 Assessment .. 20
5 Schedule and Budget ... 21
6 Future Plans ... 23
7 References ... 23
Appendixes .. 24

Appendix A – Timing Chart ... A-1
Appendix B – Test Procedures ... B-1
Appendix C – Detailed Schedule .. C-1
Appendix D – Preliminary Print Pseudo Code .. D-1
Appendix E – Preliminary TCB Function List .. E-1
Appendix F – Driver Operation Modes ... F-1
Appendix G – Selloff 1 Results 2015-04-22 ... G-1
Appendix H – Host PC UI Screens ... H-1
Appendix I – Interlock Layout and Results ... I-1
Appendix J – Selloff 2 Results 2015-04-29 ... J-1
Appendix K – Command Definitions.. K-1

iii

List of Figures
Figure 1: Context Diagram .. 1
Figure 2: System Diagram ... 3
Figure 3: Required Modes ... 5
Figure 4: POR Mode ... 6
Figure 5: Idle Mode ... 7
Figure 6: Active Mode .. 8
Figure 7: Print Text Detail ... 9
Figure 8: Error Mode ... 11
Figure 9: PSS Interrupt .. 12
Figure 10: Pulse Source & Timing .. 13
Figure 11: Hardware Safety Interlock ... 14
Figure 12: User Interfacing ... 15
Figure 13: chipKIT WiFire and Mounting .. 15
Figure 14, Host PC Hardware ... 16
Figure 15: Hardware Safety Interlock Prototype ... 17

List of Tables
Table 1: Address Line Commands .. 4
Table 2: Final Budget .. 21
Table 3: Summarized Schedule ... 22

1

1 Problem Definition

The 1403 printer that the CT&I has is currently unable to print. Rather than abandon this historic

device, the CT&I has decided to undergo a restoration process that will bring this printer to

working order. Engineers from CT&I, Triple Cities Makerspace (TCM), and this WCP team are

working together to accomplish this. This subsystem must be able to take print data as input from

a user, and properly interface with the TCM logic Printed Circuit Boards (PCBs) in order to send

information to the printer regarding which hammers to fire, and in what order.

The 1403-N1 originally required an additional rack of equipment, the IBM 2821 control unit, to

interface with a computer. This device included a set of high power transistor switches and a

control system to determine when to operate each switch. Each switch, when closed, would

provide 60Vdc at 5A to a single hammer, which would print a single print position. These

switches were referred to as “drivers” which contrasts with the modern definition of a printer

driver: software which communicates with self-contained printer hardware.

By carefully obeying the timing requirements that the 2821 controller met, the team will be able

to achieve the rated print speed of 1100 lines per minute. A previous WCP effort developed a

printer controller prototype that showed it was possible to interface with the vintage printer using

modern hardware controlled by modern software. The current WCP effort will work with TCM

and CT&I to bring the printer to working order. WCP’s prime responsibility is to work with the

previous WCP effort’s hardware and expand it to full capability.

1.1 Problem Scope

The two main pieces of this design are the timing control subsystem and the hardware safety

interlock. The timing control board acts similarly to the printer driver in most modern computers;

it will take input from a modern PC through a Host PC Application and figure out the output

signals required in order to print it. It will send output signals to control the printer’s hammers,

and these signals must adhere to real time specifications in order to ensure correct printing as well

as the safety of the printer. Spacing between lines of text is also controlled by this board. These

signals go to the TCM logic driver cards. In order to ensure that the print timings are correct, the

Timing Control board receives sync pulses from the printer (that are amplified by the TCM

Amplifier Boards). These pulses ensure that the Timing Control board does not lose track of what

it is printing. The hardware safety interlock uses information about the printer’s signals to decide

if a dangerous state exists and to stop power if that occurs.

1.2 Technical Review

Printing written text and pictures has been around for thousands of years. Whether this process

has been done by hand, or with devices ranging from wooden blocks, to moveable type, to

modern inkjet printers, humans have always wanted to write down information. Obviously, this

gives us the ability to view information at a later time, with other people. Writing information

down has allowed humans to record histories over generations.

Some of the earliest printing was done using a technique called woodblock printing. This method,

used extensively in antiquity can be done by stamping a block onto paper or fabric, or by rubbing

the medium against the block. Moveable type eventually became the most efficient method of

2

printing with Johannes Gutenberg, and the invention of the printing press. Such a device allowed

humans to print the same thing over and over very quickly. If something else needed to be

printed, it was as simple as rearranging the metal blocks to write different words. This allowed for

the mass production of books, specifically the Bible, as someone no longer had to rewrite the

entire thing by hand. The next major step in printing technology came in the late 18th century,

with lithography. This process used chemicals to create pictures. With the invention of

computers, new devices needed to be developed in order to create data and documents in the

physical space. One such device was the 1403 line printer. Line printers were large devices that

printed a single line of text at a time on one large piece of paper. These printers were capable of

printing upwards of 1000 lines of text per minute and would be used by an entire company. With

the majority of households having computers in the modern time, newer, smaller inkjet printers

have been developed in order to allow anybody to print from their home computer.

1.3 Design Requirements

The requirements for this subsystem were sourced from a full-system client specification. The

Host PC needs to be operable by someone familiar with a Windows style interface. The Host PC

needs to be able to open a file, and send all of the text to print, including the ability to space up to

three lines. Any sort of status information coming from the controller must also be displayed by

the Host PC. Hammer firing order and timing is determined by the Printer Controller. This is

important for the printer to output the proper text. If incorrect hammers are fired, or the correct

hammers are fired at the wrong time, then incorrect data will be printed. In a full system test, the

printer must be able to print up to 1100 lines of text per minute. This requirement is very

important in proving that the modified printer is able to print as well as it could in its original

form. This implies various restrictions, such as each line taking at least 55msec to print. A

hardware safety subsystem is required to ensure the printer is unharmed by user error. Appendix

A contains details about these requirements, as well as the remainder of requirements for this

project.

3

2 Design Description
2.1 Overview

Figure 2: System Diagram

The timing control subsystem sends control signals to, and receives sync signals from, the

hammer and carriage drivers developed by TCM. TCM is responsible for those physical

interfaces, and for the delivery of sync pulses at Transistor-Transistor Logic (TTL) levels. The

Timing Control Board will act as the interface with the TCM hardware, and will determine all

hammer timing information. The Host PC application, running on a Windows XP PC, serves as a

user interface to the system. An additional board, the Hardware Safety Interlock, removes system

power in the case of any safety switch activation.

2.2 Detailed Description
2.2.1 Interfaces

The Host PC and Timing Control Board interface over USB 2.0, and all communication between

them uses high speed serial. Messages are converted to a packet before being sent. Packets begin

with the 16 bit size of the message and end with the Fletcher-16 checksum of the message. The

commands are shown in appendix K.

The Timing Control Board interfaces with the driver boards using a set of 8 address lines and a

single sync line. The address lines convey the hammer to fire, and the sync line is toggled at the

moment the hammer needs to be fired. The carriage commands work in the same way. This

parallel data transmission allows the TCB and drivers to communicate at the high speeds

required. The address line controls are summarized in Table 1 below.

4

Table 1: Address Line Commands

Proposed Address Allocation

Address Setting Command

0xFF Idle (perform no action)

0x08 - 0x8C Fire the indicated hammer

0xF0 Toggle carriage command active

0xF1 Toggle carriage command idle

0x00 Reset all drivers

The Timing Control Board also receives signals from the amplifier board. The amplifier produces

Pulse Sub-Scan (PSS) pulses and Universal Character Set (UCS) pulses, which are used to

maintain synchronization with the printer. The printer uses a pair of drive gears to move the print

train, and each of these gears generates a series of pulses during operation. The amplifier detects

and amplifies these pulses so that they can be detected by the Timing Controller.

The Hardware Safety Interlock PCB interfaces with the printer in two ways. It controls 60V

power to the printer using a contactor, and receives safety inputs from the printer. See the sections

below for more information.

2.2.2 Host PC Application

The Host PC Application is written in Visual Basic .NET. It takes input from a file or allows

users to type in their own requested string. The timing control software is set up to take input one

132-character line at a time, so the Host PC application splits the input stream or string into 132-

character strings. The strings are sent to the timing control board over USB utilizing a UART.

The Host PC either waits for a finished signal from the timing control software in order to send

the next line.

The Host PC application has options available for different modes of operation, including

different character trains, a debug mode that sends the information to be printed as the entire file

and forces the timing control board to split it up and other important modes.

The Host PC application is also able to query the timing control board for status and fault

information. This results in the timing control board dumping its debug file back to the Host PC.

5

2.2.3 Timing Control Board

Figure 3: Required Modes

The Timing Control Board (TCB) interfaces with both the Host PC and the hammer/carriage

drivers. It is responsible for receipt and interpretation of the signals coming from the printer, as

well as generating signals to the driver cards based on that timing information. This device is

essentially the core of the Timing Control Subsystem, with real-time software requirements.

Upon the application of system power, the TCB enters a Power On Reset (POR) mode and begins

receiving PSS interrupts. POR mode brings the system into a working state, where all interfaces

are properly running and initialized. The PSS interrupt will sync the system with the printer as

described in section 2.2.3.5.

The TCB will need to await user commands from the Host PC, then act on them. As such, the

device will spend the majority of its time in an "Idle" mode awaiting commands. When

commands are received, the device will enter "Active" mode, where all the work is really done. If

the command was a query, such as for status information, active mode will just reply before

returning to Idle mode. If the command is to print a line, active mode will perform that action as

outlined in section 2.2.3.3.

We have purchased a chipKIT WiFire development board to act as the TCB. This device utilizes

4 modes and a single interrupt, as seen in the figure above. These modes are described in more

detail in the following subsections.

Power
Applied

POR
Mode

Idle
Mode

Active
Mode

Error
Mode

GO

Command
ReceivedGO

NO
GO

NO
GO

POR Command Received

PSS
Interrupt

6

2.2.3.1 POR Mode

Figure 4: POR Mode

The TCB turns on when power is applied either through the USB/PC interface or another power

source and the switch is turned on. The chipKit WiFire has some errata and a delay is required in

order to allow it to work properly. It will spend at least three seconds in this mode to allow the

USB to work properly. See the PIC32MZ errata datasheet for specifics.

In this mode, the chipkit waits for a PSS pulse and starts its 5us interval timer in order to keep in

sync with the print train. This is done far before the actual printing begins in order to ensure PSS

pulses are being received. After 3 seconds, USB comms will be established with the Host PC and

the chipkit will move into Idle mode. Error mode will occur if the chipKit cannot communicate

with the Host PC or no PSS pulses are received.

Power
Applied

Sync with
Print
Train

Establish
USB

Comms

GO

To Idle
Mode

GO

To Error
Mode

NO
GO

POR
Command
Received

7

2.2.3.2 Idle Mode

Figure 5: Idle Mode

The idle mode waits for information from the Host PC application. The commands it can receive

from the Host PC are shown in appendix K. The TCB will send an acknowledge back to the Host

PC before moving on to act on whatever command it was given. These commands are not time-

sensitive and so the format does not matter much. The TCB has a built-in Universal

Asynchronous Receiver-Transmitter (UART) on the micro-USB port used to communicate with

the Host PC. It receives commands serially using the chipKit serial libraries.

Wait for
Command

Reply to
Command

To Active
Mode

To Error
Mode

NO
GO

GO

GO

Active
Completed

POR
Completed

8

2.2.3.3 Active Mode

Figure 6: Active Mode

Active mode performs all actions specified by the user via the Host PC. If the specified command

is a request for information, the TCB will access said information and reply over USB. If the

command is a request to print text, the TCB will print that text by sending signals to the hammer

and carriage drivers.

The TCB will take the command from the Host PC and determine if it will start printing text or

send info to the Host PC. This information is written to the micro SD card on the TCB and when

the PC requests info, it dumps this file to the PC. The primary function of send info is to send

error information so that the operator may debug the issue. This includes the mode it was in

beforehand and whatever data exists (PSS interrupt timing data, line print data, UART buffer

contents, locations of pointers in character and hammer arrays, etc.)

The TCB receives data one line at a time in the production design. Each line is 132 characters.

This data is received through the same UART used to send commands which has the alias of

Serial in MPIDE. The Arduino Serial library is used in order to transfer data into a string, which

can be run through other algorithms.

When the timing control board has a 132-character input, it will first determine if all characters

exist on the character train. If a non-printable character is entered, it must save that character and

change to error mode. This was done to keep in line with the original printer’s behavior which lit

the error light if an unprintable character was given.

If the line has only printable characters, the TCB must determine which hammers need to be

fired. The algorithm will mark a 132-array of booleans as true or false depending on if a character

exists on that hammer’s position. It will also count the number of hammers marked in this way

and store them in an integer in order to determine the total number that need to be fired. This

array of booleans will be referred to as the hammer array. There is also an array of characters

Determine
Command

Send
Info

Print
Text

Info
Request

Print
Request

Command
Received

To
Idle

To
Error

GO
NO
GO

9

which corresponds to the current train mounted on the printer, or the character array. For the rest

of this description, it will be assumed that this is the UCS.

Figure 7: Print Text Detail

Printing text is the main task of Active mode, and the most important task of the TCB. As seen in

appendix A, the timing of print signals is complex. The time between consecutive hammer firings

may be as short as 5uS. The inner software loop must, therefore, be less than this time. In addition

to this timing, the TCB will be receiving PSS pulses approximately every 243uS. These pulses

are used to determine printer timing, as described in section 2.2.3.5.

When the printer receives a print command, it must await the next PSS interrupt. After this

interrupt, a new hammer will be aligned with a letter every 5uS for 44 hammers. Using an

interval timer set to 5us, a pointer is incremented through the hammer and character arrays. The

character pointer is incremented by 2 and the hammer pointer is incremented by 3 in order to

mimic the physical train’s movement. See Figure 1-5 in the 1403-N1 maintenance manual for an

example of how the printer hits each character. A short (~13uS) empty time will follow while

awaiting the next interrupt. This process repeats until all locations have been printed.

Check
Line

Line
Received

Set
Start

Hammer

Throw
Hammer if

Needed

Wait for
PSS Pulse

Increment
Belt and
Hammer
Pointers

Wait for
5us Passed

Loop
44

Times

Space 0-3
Lines

Get next
Line

If <55ms
Wait for
>55ms

Loop
For
All

Lines

Line Done

Loop
Until
Line

Done

10

After every increment, the current hammer that can be fired (index of hammer array + 1) is

checked against the array of bools. If that hammer is marked as true, a character exists in that

position on the input string. Therefore the character array pointer must be checked and the item at

its current position compared with the character that needs to be printed from the input string. If

the characters match, the hammer address is sent to the hammer driver cards and the number of

hammers to be fired is decremented by 1. This process continues until the number of hammers to

be fired is 0 which corresponds to all marked hammers having been fired.

The process of firing a hammer has been greatly simplified over last year’s prototype system by

the addition of the TCM logic hardware. Rather than toggling each hammer high for a specified

time, the TCB only needs to signal the TCM designed hammer drivers with the address of the

hammer to fire at the correct time. The drivers will then toggle the hammer input for 1170uS,

causing the hammer to strike the page which prints one character.

Following completion of each line, the page needs to be advanced. The timing control software

determines the number of new lines, from 1-3. This task has also been simplified by the addition

of the TCM designed logic. The TCB sends a command to the carriage driver, as described

above, with an address that signifies the start of carriage motion, and then sends another

command when it is time to stop the carriage. The driver handles the toggling of the specific

discretes which advance the page. The paper will take at least 20ms to move, depending on the

number of lines moved. During this time, the timing control software will take the next 132-

character string from the UART and check which hammers need to be fired for that string.

Each line must take at least 55ms to print. This is a mechanical limit imposed by the printer

hardware and is out of this design’s control. This lower bound on time per line will be kept by

checking the time taken to decrease the hammers required count to 0 and adding 20 since that is

the time taken to move the carriage. If this final value is less than 55, the timing control software

will have to ignore PSS pulses until it is greater than or equal to 55. The pulses must still be

recorded since they will determine what the starting hammer and character are, but the software

cannot go through and attempt to assert outputs until enough time has passed.

11

2.2.3.4 Error Mode

Figure 8: Error Mode

If the TCB encounters an unknown condition in any mode, it enters error mode. The TCB sends a

reset command to the hammer drivers by setting the appropriate address and toggling the sync

line. This causes the drivers to all be toggled low and the carriage to be stopped. It must record

the issue which resulted in error mode, if known, and the status of the TCB. It waits for a reset

command of its own from the Host PC in order to go into POR mode again. Error mode

necessitates user intervention. In order to obtain information for debugging, the operator must

query the TCB to send information (see 2.2.3.3).

Send Reset
Command

Errors
Detected

Notify
Host PC

Wait for
POR

Command

To POR

12

2.2.3.5 PSS Interrupt

Figure 9: PSS Interrupt

One of the external interrupt pins on the TCB is configured to interpret rising edges as interrupts.

Section 10.6 in the chipKit wiFire manual covers external interrupts. Only one pin is required.

The other sync signals received from the printer are not as crucial.

The PSS interrupt will is activated every 243uS by a signal from the printer. This signal indicates

that the print train is aligned at the start of a sub-scan, and that 44 hammers will be aligning as

described in section 2.2.3.3. There is also an extra pulse, the home pulse, which occurs just before

sub-scan 1 and signals a full train revolution. There is a difference in timing between the normal

PSS pulses and the extra pulse, as shown in Figure 10.

Interrupt
Received

Check
Pulse
Type

Manage
“Start

Hammer”

Manage
“Start

Character”

End

13

Figure 10: Pulse Source & Timing

PSS pulses are the main method of keeping the train and timing control software in sync. This

also requires that the software have a method of determining which pulse is the extra pulse so that

it can be ignored. This is done by comparing the time between pulses. If a pulse comes much too

soon, it is the extra pulse and will be ignored. The TCB also keeps track of times between pulses

in order to ensure that no pulses are missed or erratic. This information is used to decide when an

error has occurred, which is evidenced by too long a time between pulses or otherwise bad

timings.

Other pulses which do not cause interrupts will indicate the state of the other printer components,

and are necessary to determine which sub-scan is being triggered. These signals are checked after

entering the interrupt. Once this information is received, the interrupt determines what state the

belt is in and records that position for use by Active mode.

Drive Gear
34.992 msec/rev

 144 PSS Pulses

Extra Pulse

243 sec
(1/3 char width)

121.5

sec

14

2.2.4 Hardware Safety Interlock

Figure 11: Hardware Safety Interlock

The interlock PCB is the only hardware which the WCP team produced. It will remove power

when unsafe conditions occur. Rather than remove power using software, and since this system is

meant to protect the printer from damage, it was decided that pure hardware should be used to

decrease the chances of failure.

The printer controller rack contains a contactor for removing power when hardware errors occur.

One side of the contactor coil is powered by 60Vdc, and the other needs to be grounded before

power is applied to the printer. This ground is supplied by the WCP interlock device, and will be

removed in the case of error. When the interlock device removes this ground, power will be

removed from the printer.

The printer contains a set of switches which will open when the printer enters an unsafe

condition. For example, if the printer is overheating a thermal safety switch will open. Rather

than detect these failures with the interlock device, all of these switches will be placed in series

with the provided ground signal. When any switch opens, it will break the ground and open the

contactor, resulting in the removal of power.

The interlock will detect if the carriage is signaled to move while any hammer is currently

engaged, as this could damage the printer. This task is complicated by the fact that a 1.2ms

15

coincidence between carriage and hammer signals is expected on every printed line. This means

that coincidences of less than ~2ms must be ignored, and longer coincidences must result in

removal of power.

To prevent power from being applied while the control signals are in an unknown state, the

carriage driver includes an enable signal to be detected by the interlock device. This active low

signal results in removal of power when removed.

2.3 Use

Figure 12: User Interfacing

This design effectively replaces the rack of hardware which this printer required in order to

interface with a CPU. It allows a modern PC to interface with the 1403-N1 line printer. To the

user, most of this design’s functions are hidden. A user need only interface directly with the Host

PC application. They must have some text in mind to print and either type it directly into the Host

PC application or have a file they wish to print. An operator who wishes to investigate printer

errors may query the TCB for fault information and edit the configuration files, but the end-user

will only print text.

3 Implementation
3.1 Timing Controller

Figure 13: chipKIT WiFire and Mounting

The timing control software was implemented on a chipKIT WiFire board using MPIDE, which

is similar in form to the Arduino development environment. The program makes it complicated to

include multiple source files into a single build, so all code is contained in a single file with no

headers. The language is C++, but many functions are included for manipulating the chipKIT.

1403-N1 Line Printer +
Supporting Hardware

Modern PCUser Timing Control Board

16

All wait loops were implemented using the PIC32 core timer, a register which is incremented on

every other clock cycle. Since the WiFire runs at an internal clock speed of 200MHz, this means

that the core timer has a resolution of 10ns. This made it very convenient to get tight timings on

all our loops, notably the 5us inner loop during the cascade. Given the 32 bit register size, the

maximum delay time of any wait loop would be around 43s, so we never came close to having

issues there.

Rather than use the MPIDE port manipulation functions, direct port manipulation was performed

using the PIC32 LAT, PORT, and TRIS registers. This was necessary because the MPIDE port

manipulation functions have a lot of overhead, and we wanted to keep both the inner loop and

interrupt times down as low as possible. Since this adds some complexity to the code, all port

manipulation functions were implemented in #define statements, which were prefaced with a

comment block explaining the use of each function.

The chipKIT will be mounted inside of a rack mount chassis that CT&I and TCM designed. The

chassis is intended to hold all the hammer and carriage driver cards, a power supply for them, the

chipKIT, and all wiring necessary for interconnection. TCM also designed and 3D printed a

holder for the chipKIT which will be adhered to the floor of the chassis. Panel mount USB and

SD card connectors were ordered and fitted to the chassis so that chipKIT connections can be

made without opening the case. CT&I is currently in the process of chassis assembly and wiring,

following which they will physically integrate the WCP subsystem with all other hardware.

3.2 Host PC

Figure 14, Host PC Hardware

The Host PC software was implemented on a Windows XP machine that CT&I had allocated for

the purpose, and was written in VB.NET using Microsoft Visual Studio (VS) Express 2010. This

was the most recent version of VS that would run on an XP computer, and it was necessary to

write all code in the .NET Framework version 4.0 for the same reason. The code should therefore

be compatible with any current Windows version (7 or 8) without modification, as they are

compatible with Framework 4.0.

The Host PC software UI can be seen in appendix H. Screens were included for managing

connection, creating configuration files, and printing. Each screen has a clear indicator of the

connection status, including any errors that may occur. The software was implemented using

event driven code, so errors can be detected and displayed at any time should they occur.

17

3.3 Hardware Safety Interlock

Figure 15: Hardware Safety Interlock Prototype

The Interlock device was designed with the help of Robert Arnold, a volunteer at the client site

and retired IBM engineer who had assisted in the original design of the 1403 printer. A scheme

was developed without any special circuitry for the printer interlocks, and the switches

themselves were placed in the forward path of the 60Vdc supply to the contactor. This would

ensure that the contactor opened if any of the interlocks were opened.

One function that remained on the interlock card itself was detection of carriage controls

coinciding with engaged hammers. The complication was that coincidence is expected for the

first ~1170us of the carriage control signal. A pair of mono-stable “single-shots” were

implemented to ignore coincidence of less than ~2ms, while longer coincidence would trigger a

~100ms disable pulse to the contactor, opening it. Test results for this circuitry can be seen in

appendix I.

CT&I also requested that a function be added to the interlock device. This was a software enable,

which would need to be held low for the printer to receive power. This enable was added and will

be connected to a spare output of the carriage driver card for use by the TCM software.

A single prototype was assembled using perf board. The prototype was made to match the layout

of the routed board to facilitate debug if it were necessary. The prototype was tested by inputting

pulses of different lengths to the various inputs of the unit, and the results were delivered to

CT&I. Those results were approved by client engineers, and gerber files for a routed board were

delivered to the client. The gerber files include a second routing which includes two sets of

circuitry on a single board which could be cut in half, resulting in two interlock bare boards. This

was provided to reduce client costs should they ever decide to create a final board and spare.

18

4 Evaluation
4.1 Overview

In order to demonstrate that the system can meet all of its requirements, a series of acceptance

tests will be performed. Each test will validate one or more requirements of the system, as shown

in appendix B. When all tests in appendix B have been performed, the system will be considered

complete and ready to be delivered to the client.

Testing will take place at the client site during one or more selloff events. These events should

take place no later than April 29 2015 but may take place as soon as system integration has

completed. If possible a client representative will be present at the selloff events to approve test

approach and witness test results.

The test procedures were devised in such a way that each test has as little reliance as possible on

hardware outside the scope of the requirement. For example, requirements for the Timing

Controller alone should not have tests which rely on the Host PC or on the hammer/carriage

drivers. For that reason, the test procedures are separated into sections based on the scope of the

requirements within.

4.2 Testing and Results
4.2.1 Selloff Event One

On April 23 2015 a selloff event was attempted and partially completed at the client site. The

results were later determined to be erroneous, as explained in the following paragraphs, and this

event cannot be used as validation of any requirement. A signoff sheet, included in this document

as appendix G, was filled in by Arthur Law, who was present as a client representative. During

the event, 20 of the 64 total tests were completed successfully. Given the result of the passed

tests, additional 10 tests were deemed unnecessary by the client and signed off.

Shortly after the start of the event, it was determined that we could not meet certain requirements

with the loaded Timing Controller software. We had implemented enhancements to the Error

mode and SD card code, and these changes were causing unexpected problems with the rest of

the functions. The team decided to roll back to a previous release for the event, since the

enhancements could be proven out at a later date. The previous week’s code was quickly

reviewed, and several essential updates were made.

During test, it was determined that several portions of the loaded code had been mistakenly left in

a debug mode. For example, the entry point to error mode had been commented out to facilitate

debug the prior week. These determinations were made in the later portion of the event, and likely

invalidated the test results of some performed tests. Given the irregularity of the circumstances, it

was decided that all testing would need to be repeated with a new release of the code, and the

results of selloff 1 were to be considered invalid.

The event was started at 18:00 without a Control Signal Detector (CSD) present, and all tests

which required that device were left unperformed. The tests which were completed included

many of those proving serial communication between the Host PC and Timing Controller, print

signal timing, transition into the different operational modes, and detection of sync errors. The

19

voltage levels of the command outputs were also tested, but the majority of the signals were

signed off by the client without test because of the unlikelihood of failure.

Jim Ulrich, a TCM representative and the designer of the hammer/carriage driver software,

arrived during selloff, and the procedure was interrupted to implement a CSD. The team decided

that it would be best if a driver card was used as a CSD, and the hammer drive signals were used

to verify timing and address. Jim quickly modified his release so that a “Reset” command would

cause the character ‘R’ to be sent over serial. This would allow the team to more easily detect

reset signals, which cause no other change in driver board outputs. At this point it was determined

that selloff should be aborted and testing ended.

During this event, two additional findings were made. Firstly, the PSS interrupt was too error

sensitive and needed improvement. Intermittently the Timing Controller would detect a timing

error in the PSS pulses and enter error mode. Secondly, the serial approach needed enhancement.

Occasionally during serial transmission a byte was lost, resulting in a comm error. These issues

were to be addressed at a future date, ideally prior to any future selloff event.

4.2.2 Selloff Event Two

On April 29 and 30 2015, a second selloff event was attempted and completed successfully. A

signoff sheet, included in this document as appendix J, was filled in by Nicholas Hekman, with

Robert Lusch present as a client representative. During the event, 34 of the 64 tests were

completed successfully. 18 additional tests were deemed unnecessary given successful

completion of the aforementioned tests. The remaining 12 tests were not performed due to partial

completion of the rack wiring, and are expected to pass when they are performed.

Following failure of selloff 1, fixes for all complications had been implemented. Serial

communication was improved by prepending the message size and appending a Fletcher-16

checksum to the message. Message receipt was then acknowledged following checksum

calculation and comparison. The PSS interrupt was made more robust by adding additional error

handling, especially the ability to recover from a single missed PSS pulse. The concept of

“minor” errors was also implemented, meaning that errors which did not directly imply loss of

sync (glitches) would be ignored until a threshold amount had occurred.

The event was started at 18:00 using a logic analyzer as the CSD. After the arrival of Jim Ulrich,

a carriage driver and hammer driver were provided to be used as CSDs. All tests except for 3060

were completed without complication. Given the ability of the hammer and carriage driver cards

to properly detect control signals, paired with the success from the previous selloff, tests 1010

and 1020 were determined to be unnecessary and were not performed.

Test 3060, sending of carriage space commands, could not be completed during the first night of

the event. Space commands were sent and detected, but the timing of the commands was too

short. Instead of a 2ms spacing, the 1 line space had ~2.2us spacing. After leaving the client site

for the night, the problem was found to be a line of code which was off by a factor of 1000. The

code was corrected, and 3060 retest was completed on the following afternoon.

During the event, one additional finding was made. The serial enhancements had been designed

to operate within the 20ms of free time following each printed line, and were expected to take

around 10ms. After acceptance testing was completed, this belief was tested and found to be

incorrect. The entire process of sending one line over serial was seen to take ~30ms, which

20

exceeded the time available when printing full lines. This will limit maximum print speed to less

than 950 LPM.

It is theorized that this unexpectedly long serial time is due to a delay in the Host PC software

serial following the receipt of each line. The Host PC software is currently event driven, and an

event occurs when serial data has been received which triggers evaluation of the data and if

required response. The event will not occur for some time after serial data is received while the

PC waits for additional data which is not coming. The team’s proposal for reducing the latency is

to move from event driven code to multi-threaded code, which will allow us to respond very

quickly following the receipt of serial data. This will have the added benefit of more closely

matching the Timing Controller serial approach, which operates synchronously on the main

thread.

4.3 Assessment

Although the system was able to pass all acceptance testing, it is unable to meet the throughput

desired by the client. With the current serial approach, robust though it is, the maximum

throughput of the device is approximately 950 LPM, compared to the client specified print speed

of 1100 LPM. WCP has, however, determined a method for meeting this specification, and the

team will try to reach that goal prior to handing off the software.

The team was able to implement a robust approach to maintaining sync with the printer. The

system now rarely, if ever, loses sync with the print train, and any loss of sync should indicate an

issue with the printer and generation of sync pulses. This was the biggest concern of the CT&I

team, and it is a major accomplishment in its own right.

The Host PC user interface is now clean and user friendly, offering instant feedback following the

occurrence of any error. The Host PC is capable of performing all required tasks, including the

printing of a text file as specified by the user.

The Interlock device has not been fully integrated with the contactor or switches, and has never

been connected to the carriage driver. As such, it would be hard to accurately assess the

functionality of the board. However, given the customer requirements and the results of unit

testing on the prototype, it is reasonable to expect that the device will operate as intended.

21

5 Schedule and Budget

For this project, our team was given a budget of $800 from the IEEE Binghamton Section. In the

beginning of the year, we made an initial budget based on what we thought we would need. We

began by thinking that we would need a single chipKIT WiFire board and planned our budget

around this. It became apparent later on in the project that we would in fact need two in order to

debug our software efficiently. This has impacted our budget significantly, but we have been able

to absorb this increase in cost due to the fact that we had overestimated the cost of certain other

aspects of our project. At the end of this project, we are predicted to come in significantly under

budget, as seen in table 2 below.

Table 2: Final Budget

Item
Original

Estimate $

Actual to

Date $

Estimate to

Completion $

Estimate at

Completion $

chipKIT WiFire (x2) 100 188 0 188

Hardware Safety

Interlock and Mounting
200 30 70 100

Prototyping, Rework,

and Misc. Hardware
300 92 208 300

Total $ 600 310 278 588

Budget $ 800

Remaining $ 212

22

Over the course of this school year, our team has been required to complete certain

project related milestones, summarized in table 3 below. These milestones started in

October, with the beginning of this project, and will end in May as we conclude our

work. We have been able to complete every milestone on time so far, with some being

completed ahead of time. All of these milestones have been completed in accordance

with the WCP requirements. Our team is also on track to complete our future milestones

and present our work to CT&I. A detailed project schedule is available in appendix C.

Table 3: Summarized Schedule

Milestone Date Due Percent Completed

Project Launch 2014-10-03 100

Requirements Analysis / SRR 2014-10-17 100

System Design and Planning /

SDR
2014-11-14 100

Detailed Design / CDR 2014-12-05 100

Interim Presentation 2014-12-12 100

Prototype Operational 2015-04-17 100

Testing Complete 2015-04-24 90

Final Presentation and Report 2015-05-08 25

Delivery to Client 2015-05-16 25

23

6 Future Plans

Before our subsystems can be utilized, the CT&I Printer Refurbishment Project must complete

system integration and test at their overall project level. A total of 17 hammer driver boards and

one carriage driver board will need to be assembled for the chassis, which represents a lot of

wiring. Each card will receive connections to the 9 timing controller outputs, and will have

outputs to drive 8 hammers.

Once the chassis components are mounted, all control signals will need to be validated. Timing

controller outputs have been validated when connected to a single hammer driver via a foot of

wire, and it is currently unknown whether additional hammer driver connections will affect the

signals. One BAE systems engineer who was consulted suggested that 50ohm terminations may

be necessary to reduce ringing in longer lines, but that the current approach should be tried before

implementing any change.

Once the system is fully assembled and mechanically fit, the line spacing times will need to be

adjusted in software. Client engineers have informed the team that line space timings are variable

and may need to be varied, so these have been left variable in the software and will need to be

found empirically before being set.

If the client wishes, they could at a future time implement the high speed skip function of the

carriage. This would allow them to space much faster than the current implementation, but is only

meant for spaces of more than three lines. Due to the complexity of the process, and because it is

considered unnecessary for normal printer operation, the client did not want the feature added at

this time. The carriage driver was, however, developed with the high speed skip in mind, and

there are control signals mapped to the enabling and disabling of the carriage high speed skip.

This means that the WCP software could be updated to incorporate high speed skips with no

hardware modifications necessary.

7 References

[1] Digilent Inc. (2014). ChipKIT™WiFire™ Board Reference Manual. Pullman, WA: Digilent

Inc.

[2] WCP07 IBM Printer Driver Project Requirements Specification (PRS) Rev. A of 2014-11-08

24

Appendixes

Appendix A – Timing Chart

Appendix B – Test Procedures

Appendix C – Detailed Schedule

Appendix D – Preliminary Print Pseudo Code

Appendix E – Preliminary TCB Function List

Appendix F – Driver Operation Modes

Appendix G – Selloff 1 Results 2015-04-22

Appendix H – Host PC UI Screens

Appendix I – Interlock Layout and Results

Appendix J – Selloff 2 Results 2015-04-29

Appendix K – Command Definitions

A-1

Appendix A – Timing Chart

PC Host Cmd seconds

0 sec N sec

Print time ≥ 34.55msec Carriage move time 20msec

0 ≥34.55 msec ≥54.55 msec

Print line msec

Event Timescale

PSS # 144 Extra 1 2 3

Hammer #
1 4 7 10 … 130 2 5 8 11 … 131 3 6 9 12 …

243 sec

5 sec

121.5 sec 121.5 secPrint char sec

X msec

Space Start/Stop
Solenoid

Start: On
Stop: Off

Start: Off
Stop: On

1 Space X= 5 msec (4.6 to 6.8 msec)
2 Spaces X= 9.8 msec (tbd to tbd msec)
3 Spaces X= 13.8 msec (tbd to tbd msec)

Carriage space msec

UCS Pulse

Coincident every
train revolution of

174,960 sec29.16 msec

Train home pulse msec 174.96 msec

E1 carriage pulse msec TBD 2014-11-07 7

B-1

Appendix B – Test Procedures

B-2

B-3

B-4

B-5

B-6

B-7

B-8

B-9

B-10

B-11

B-12

B-13

B-14

B-15

B-16

B-17

B-18

B-19

B-20

C-1

Appendix C – Detailed Schedule

C-2

C-3

C-4

C-5

D-1

Appendix D – Preliminary Print Pseudo Code Nick Hekman
2014-11-05

PSS Interrupt:
 Check for Home or Extra Pulse
 If not Home or Extra, record "PSS Occurred"
 Maintain "Start Hammer" variable (1, 2, or 3)
 Maintain "Start Char" Variable (any char in belt)

Print File:
 Receive SOF command from Host, reply
 Receive First line from host, reply
 Check Line
 Check for characters not in belt
 Replace with space
 Flag error status
 Check for hammers to throw
 Mark all hammers that need attention in a/several bitfield(s)
 PRINT (loop marker)
 Print line
 LINE (loop marker)
 Set current hammer and character
 Wait for "PSS Occurred"
 Start "cascade"
 CASCADE (loop marker)
 Check hammer and char for coincidence
 Set address bits
 set sync active
 wait for logic interrupt
 set sync idle
 Remove hammer from bitfield
 Increment hammer by 3 and character by 2
 Wait rest of 5us
 GOTO CASCADE: loop 44x
 GOTO LINE: Loop until the line is complete (bitfield empty)
 Space 0-3 lines
 Send start carriage command (as with hammers above)
 Wait the appropriate time for the specified spaces
 Send end carriage command (as with hammers above)
 Get next line, reply with status
 Check line as above
 Wait remaining time for space operation to complete
 If <55ms since starting line, wait till >55ms
 GOTO PRINT: loop until EOF received from host
 EOF received, return to Idle Mode

E-1

Appendix E – Preliminary TCB Function List

 Send USB Command

 Receive USB Command

 Check one line

 PSS Interrupt

 Cascade (44 character alignment following PSS)

 Print one line

 Fire specified hammer

 Space N lines

 Load config from file

 Update config file

F-1

Appendix F – Driver Operation Modes

F-2

H-1

Appendix G – Selloff 1 Results 2015-04-22

Note: These results are to be considered invalid, as described in section 4.2.1.

H-2

H-1

Appendix H – Host PC UI Screens

H-2

H-3

H-4

I-1

Appendix I – Interlock Layout and Results

I-2

The 2ms delay between the start of hammer/carriage coincidence and the disable signal.

I-3

The 100ms disable time at the interlock output following hammer and carriage coincidence.

J-1

Appendix J – Selloff 2 Results 2015-04-29

J-2

K-1

Appendix K – Command Definitions

B
aud

115200

data bits
8

sto
p bits

1

parity
no

ne

Term
inating char

no
ne

H
o

st PC
 initiated

Functio
n

C
o

m
m

and
A

rgs
R

ep
ly

D
escriptio

n

Print Page
PR

P
[Text][N

]
PR

P [Erro
r]

Fo
llo

w
ing PR

P, single lines o
f text w

ill be sen
t. A

fter

printing each, the chipKIT w
ill rep

ly w
ith any erro

r

co
de fo

r the previo
us line.

End print page
EN

D
EN

D
 [Erro

r]

M
arks the en

d o
f the printed page. C

hipkit rep
lies

w
ith erro

r o
f previo

us line.

W
rite C

o
nfig File

W
C

F
[File C

o
ntents]

W
C

F

O
verw

rites the curren
t co

nfig file sto
red

 o
n the SD

card.

G
et curren

t erro
r co

des
ER

R
ER

R
 [Erro

r]
G

ets curren
t erro

r co
des.

Po
w

er o
n reset

PO
R

PO
R

 [ER
R

O
R

]
C

ause po
w

er o
n reset.

Q
uery

W
H

O
W

PC

Q
uery the chipKIT to

 m
ake sure yo

u're talking to

the right guy. Sho
uld be do

ne w
hen

 establishing

C
o

m
m

s.

chipKIT initiated

Functio
n

C
o

m
m

and
A

rgs
R

ep
ly

D
escriptio

n

Erro
r O

ccurred
ER

R
[Erro

r]
O

ccurrs w
hen

 erro
r m

o
de is en

tered
.

