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CHAPTER I

INTRODUCTORY CONCEPTS

1-1. TUnits

In the study of mechanics we are concerned with the inter-
actions of material bodies. More specifically, we study the inter-
actions and motions of an idealized system composed of particles, ex-
tended bodies, and fluids. By this means we are able to explain and
to predict many of the mechanical phenomena that we can observe and
measure.

In order to be able to distinguish between the wvarious sorts
of mechanical variables and to assign numeriqgl values to their magni-
tudes, one is led to a consideration of units and their dimensions.
For our purposes, three fundamental units are sufficient, namely, the
units of length, force and time., All other units such as the units of
mass, velocity, area, momentum, etc., can be expressed in terms of the
fundamental units and are known as derived units.

We shall adopt the English gravitational system of units in
which the unit of length is the foot, the unit of force is the pound,
and the unit of time is the second.

Definitions of basic units. For our purposes, the definitions
of the basic units can be clarified by thinking of operational procedures
illustrating their meaning. For example, the foot could be defined in
terms of the distance between two lines on a specific bar at a standard
temperature. The pound as a unit of force could be defined in terms of
the effort required to produce a given extension in a certain spring
under standard conditions. The unit of time, the second, could Le de-
fined in terms of the period of the earth's rotation on its axis with
respect to the fixed stars.

These definitions do not coincide with the standard definitions
in actual use. In particular, the unit of mass is considered as funda-
mental in accordance with international agreement rather than the unit of
force. In this case, the unit of force is a derived unit and is that
force required to give the standard mass a certain acceleration.

Derived Units. We have seen that the gravitational system of
units regards the units of length, force and time as fundamental and that
all other quantities involved in the study of mechanics can be expressed
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in terms of these fundamental units. Perhaps the most important of these
derived units is the unit of mass known as the slug. The siug has the

units of 1b secz/ft and is that mass which one pound of force accelerates

at the rate of 1 ft/secg. Its weight, that is, the gravitational force
acting on it, is mg or approximately'32.17 1bs. We will generally specify
mass in 1b secZ/ft rather then in slugs in order to keep the number of

units at a minimum. DNote that we do not use the pound as a unit of mass

in this presentation, even though it is the legal standard of mass in this
country. We will slways use the term "pound" as a unit of force.

J Some of the most commonly used quantities are listed below with
their corresponding gravitational units and dimensions. The dimensions in
each case are designated by the algebraic terms in the brackets. F, L, and
T refer to units of force, length, and time, respectively. The exponents
are those of the corresponding units in the middle column. The dimensions
-of a given quantity are fixed so long as the general system of units is not
changed, i. e., whether one measures length in feet or centimeters is im-
material in specifying the dimensions. On the other hand, if one should
choose mass rather than force as a fundamental unit, the dimensions of
many mechanical quantities would be changed.

Quantity Gravitational Units Dimensions
length foot [ L]
force pound [ F ]
time second [ T ]
mass 1b sec?/ft(slug) [ FT2L-1)
velocity ft/sec [ Lr-1 ]
acceleration ft/sec2 [ LT-2 ]
energy (work) Th 1B [ FL ]
angular velocity 1/sec [ T-1]
moment 1b £t [ FL ]
moment of inertia 1b ft sec? [ FLT2 ]
linesar momentum 1b sec [ T ]
angular momentum 1b £t sec [ FLT ]
linear impulse 1b sec [ FT ]
angular impulse 1b ft sec [ FLT ]

Dimensional homogeneity. It is helpful to carry along the units
when performing numerical computations, treating them as algebraic quan-
tities. This implies that any terms which are added or subtracted must
have the same dimensions, Also, of: course, the expressions on each side
of an equality must have the same dimensions. Furthermore, any argument
of a transcendental function such as the trigonometric functions, expo-
nential functions, Bessel functions, etc., must be dimensionless, that is,
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all dimensional exponents must be zero. One will sometimes find apparent
exceptions to this rule but in all cases some of the coefficients will
prove to have unsuspected dimensions or else the equation is an empirical
approximation not based on physical law. In checking for dimensional
homogeneity one should note that the unit of angular displacement, the
radian, is dimensionless.

Conversion of units. The algebraic manipulation of units often
requires the conversion of one set of units to another set having the
same dimensions., It is usually advisable to convert to three basic units
such as feet, pounds, and seconds rather than carrying along derived units
such as slugs or perhaps several different units of length. In this con-
version process one does not change the magnitudes of any of the physical
quantities, but only their form of expression.

A convenient method of changing units is to multiply by one or
more fractions whose magnitude is unity but in which the numerator and
denominstor are expressed in different units. Suppose, for example, that
one wishes to convert furlongs per fortnight into inches per second. One
finds that

1 furlong = 220 yd
1 yd = 36 in
1 fortnight = 1L days
1 day = 86,400 sec.
Therefore,
1 furlong _ 1 furleng 1 fortmight | 1 day 220 .- 36 in

fortnight 1 _fortnight 14 deys- 86,400sec 1 furleng 1 yd:

= 6.548 x 1073 1n

sec

1-2. Vectors

Scalars, vectors, tensors. In this treatment of mechanics,
the vectorial approach will be emphasized rather than the variational
approach. It is important, then, to have a firm grasp of basic vector
operations that will be used in its development.

First let us distinguish among scalars, vectors, and other
tensors of higher order. Briefly, a scalar quantity 1s expressible as
e single number., A vector is expressible as a column of numbers. A



second-order tensor (the inertia tensor, for example) can be written as

a two-dimensional array of numbers. Similarly, a third-order tensor can
be written as a three-dimensional array of numbers, and so on. Thus, one
concludes that a vector is a first-order tensor and also that a scalar is
a zero-order tensor.

We will not be concerned with tensors of order higher than two
and therefore no more than a two-dimensional array of numbers will be
needed to express the gquantities encountered. This circumstance enables
us to use matrix notation rather than the more general but less familiar
tensor notation. Also, except for the chapter on vibration theory, we
will be concerned with phenomena in a three-dimensional space and there-
fore each matrix or array will have no more than three rows or columns
and each vector will have no more than three components.

Type of vectors. Instead of thinking of a vector as a one-
dimensional array of numbers, we might consider its graphical representa-
tion as a line segment having a definite magnitude and direction. For
such a vector in three-dimensional space we can identify its three com-
ponents with the numbers of the array. This sort of vector quantity which
has magnitude and direction but no specified location is known as a free
vector. For example, the translational velocity of nonrotating body can
be represented by a free vector, this vector specifying the velocity of
any point in the body. Another example is a force vector:when consider -
ing its effect upon translational motion. -

On the other hand, when one considers the effect of a force on
the rotational motion of a rigid body, not only the magnitude and direction
of the force, but also its line of action are important. In this case the
moment acting on the body will depend upon the line of action of the force
but will be independent of the precise point of application along that line.
A vector of this sort is known as a sliding vector.

The third principal type of vector is the bound vector. In this
case, the magnitude, direction and point of application are specified. An
example of a bound vector is a force acting on an elastic body, the elastic
deformation being dependent upon the exact location of the force.

Most of the vectors that are encountered in mechanics are free
vectors., But regardless of the types of vectors involved, the vector
operations such as summation, multiplication, differentiation, etc., will
be performed using only the properties of magnitude and direction. If
the location is important, this will influence the statement of the wvector
operation but will not affect the procedure to be followed in its evaluation.



Unit vectors. When a vector is multiplied by a positive scalar,
the resulting vector has the same direction but the magnitude is multiplied
by the scalar factor. Conversely, when a vector is multiplied by a nega-
tive scalar, the direction is exactly reversed, but the magnitude is again
changed by a factor equal to the magnitude of the scalar. This being the
case, one can always think of a vector as being the product of a scalar
equal to the magnitude of the vector and a vector of unit length pointing
in a direction parallel to the vector. (See Figure 1)

In other words we can write

where the scalar factor A specifies the magnitude of vector E“and the unit
vector €, specifies its direction.

Addition of vectors. The vectors A and B can be added ‘as shown
in Figure 2 to give the resultant vector C. To add B to A, translate B
until its beginning is at the arrow of A. The vector sum is indicated
by the directed line segment from the beginning of A to the arrow of B. .
The translation process is permissible because we are concerned only with
the free vector properties of magnitude and direction and riot the location.

It can be seen that

C=A+B=B+A (1-2)



and therefore vector addition is commutative. By the same process as in
Figure 2 we could add more than two vectors. For example, if we add another
vector D to T, we obtain

C+D=(A+B)+D=E ' (1=3)

as shown in Figure 3.

D
)
f '
B
'
&=
A
Figure 3

But we need not have grouped the vectors in this way. Again from Figure 3,
we see that

E=A+ (B+D) (1-1)

From (1-3) and (1-4) we see that

(A+B) +D =A+ (B +D) (1-5)

illustrating that vector addition is associative.

In summary, because of the cummutative and associative properties
of vector addition, we can dispense with the parentheses in a series of
additions and perform the-additions in any order.

Componients of a vector. If a given vector A is equal to the sum
of several vectors, these vectors can be considered as component vectors of
A. Since component vectors defined in this way are not unique, it is the
usual practice to specify their directions, generally using three unit
vectors. If we specify further that the unit vectors be mutually orthogonal,
as in the Cartesian system of Figure 4, then the vector components are
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A A&E and Ak where i, Jj, and k are unit vectors in the positive x, ¥,
and z directions, respectively.

A = AyT + Ayd + Agk ' (1-6)

The magnitudes Ay, Ay, and A, are known as the scalar components of K in
the given directions. TFor this case where the unit vectors form an ortho-
gonal set, the components‘éx, Ay, and A; are also equal to the orthogonal
projections of.the vector A on the x, y, and z axes, respectively.

The use of components can simplify vector operations. For
example, if the vectors A and B are specified using the same set of unit
vectors, then the components of the vector sum are merely the individual
sums of the corresponding components. In other words, if

A=Ay e] + Apep+ A3 e3 (1-7)
and if
B =B g + Bpep+ Bjey (1-8)
then
A+3 =(A + Bp)ep + (Ap + Bplep + (A3 + B3y )eg (1-9)

whether or not e;, ep, and E3 form an orthogonal set of unit vectors.

Scalar product. The scalar product of two vectors A and B is
also known as the dot product and is given by

=l

B = ABcos 6 (1-10)

It can be seen that

o]
1

A B-A [1-11)

s0 scalar multiplication is commutative.

(o sl




If the vectors A and B are given by Equations (1-7) and (1-8)
where the unit vectors €, €, and €3 are mutually orthogonal, then

AB = A) By + ApBp + A3B3 (1-12)

Additional terms are required for the case where €1, €p, and €3 are not
orthogonal .

In obtaining Equation (1-12) we have used the fact that scalar
multiplication is distributive, that is,

$-(§+E) =73+ PR | (1-13)

Vector product. Referring again to Figure 5 we can define the
vector product or cross product as

ZxB = ABsinek (1-1%)

where K is a unit vector perpendicular to and out of the page. In general
the magnitude of the vector product is the product of the vector amplitudes
times the sine of the angle traversed in going from the first wvector to the
second. The direction of the product vector is perpendicular to the plane
of A and B (assuming the vectors are translated such that they have a common
origin) and the sense is determined from the right-hand rule as A is rotated
to B.

It can be seen that

AxB = -Bx A (1-15)
so the vector product is not commutative.

Furthermore, one can show that the vector product is not associa-
tive,

(Rx3B) xC+Ax(BxC) (1-16)
However, it is distributive

Ax (B+TC) =(AExB) + (AxT) (1-17)

It should be pointed out that the vector triple product A x (BxC)
lies in the plane determined by B and C.

Ax (BxC) = (BC)B - (A&B) ¢ (1-18)
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scalar, whereas the vector A + AA corresponds to u + Au. Then the deriv-
ative is found by the limiting process

dA _ lim pA - (1-22)
du u—»0 Au

For the case where the vector is differentiated with respect to
time, geometrical significance can be attached to the derivative. It is
simply the velocity of the point of the vector when the other end is fixed.

Differentiaﬁion of a vector is a distributive operation, that is,

B B oot g8

du du (1-23)

£ g

So one can obtain the derivative of a vector as the sum of the derivatives
of its components. If A is given by equation (1-6) then,

Sy, AVJ+_._- (1-24)
du du du

where the Cartesian unit vectors I, j, and k are assumed to be independent
of u.

Often one encounters time derivatives of vectors expressed in
terms of unit vectors whose direction varies with time. If

P
A= Ay gl + Ap 52 + A3 gs (1-25)

then

%:Algld- Aggg-}- ABEB-E- Ay 1 + Apeo+ A3E3 (1-26)

1-3. Newton's Laws of Motion for a Particle

In 1687, Sir Isaac Newton stated the laws on which classical
mechanics is based. These laws, referring the motion of a particle (i. e.,
a mass concentrated at a point) under the action of an external force, are
as follows:

1. A particle under the action of no forces remains gt rest or
moves in a straight line with constant speed.

2. The rate of change of momentum is proportional to the im-
pressed force and is in the direction in which the force
acts.
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3. To every action there is an equal and opposite
reaction.

The law of motion. Newton's first two laws may be summarized
by the equation

— d =i
Fekg (m v) = kma (1-27)

where m is the mass of the particle, a is its acceleration, F is
the applied external force and where k is a positive constant whole
value depends upon the choice of units. Note that the mass of a particle
is constant in Newtonian mechanics; variable-mass systems are treated as
a collection of particles. Also note that forces due to gravitational or
electromagnetic fields are regarded as external forces.

Because of the fundamental nature of this equation, the units
are chosen such that k = 1. For example, in the gravitational system
the unit of mass, the slug (1b secg/ft), is that mass which is given an
acceleration of 1 ft/sec2 by a force of 1 1b. Similarly, in another
system such as the cgs (centimetergram-second) system, the unit of force,
the dyne, is chosen such that the constant k = 1.

So, with a proper choice of units, Equation (1-27) can be
gimplified to the form

F = ma (1-28)

The question immediately arises as to a proper frame of reference
with respect to which the acceleration is to be measured. Any reference
frame in which Equation (1-28) applies is known as an inertial or Newtonian
system. An example of such a system is one that is fixed with respect to
the average position of the "fixed" stars. Another system which can be
considered as inertial is a nonrotating system that is fixed with respect
to center of the sun. In fact, for many engineering applications, a system
fixed in the earth is satisfactory.

Now it can be shown that any system that is not rotating and is
translating at a uniform velocity with respect to an inertial system is
itself an inertial system., For example, if system B is translating at
constant velocity ;fel with respect to an inertial system A, then dencting
the velocity of a particle as viewed by observers on A and B by vy and vg,
respectively, we see that

?A = ;é + Vypel (1-29)
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Differentiating with respect to time and noting that the derivative of
Vye1 is zero, we obtain

8, = Bp (1-30)

vhere ‘ap and &g are the accelerations of the particle as viewed from
systems A and B respectively. So from the Newtonian, nonrelativistie,
point of view, observers on systems A and B see identical forces,
masses and accelerations and, therefore, Equation (1-28) is equally valid
for each observer, |

The law of action and reaction. Newton's third law is essentially
a statement concerning the interaction forces between two particles. Its
meaning can be clarified somewhat by writing it in the following form:

When two particles exert forces on each other, these interaction
forces are equal in magnitude, opposite in sense, and directed along
the straight line joining the particles.

In other words, the force exerted by particle A on particle B
is equal, opposite, and collinear to the force exerted by particle B on
particle A. This added requirement of collinearity will be found to be
essential for the conservation of angular momentum of an isolated mechanical
system. The possibility of one particle exerting a moment on another parti-
cle does not arise because a point mass has no rotational inertia and thus
cannot, by itself, exert a moment.

The law of addition of forces. Newton's laws do not specifically
consider the case where a gingle particle is being acted upon simultaneously
by two or more forces. In order to cover that possibility the following
law can be stated:

Two forces P and"ﬁ acting simultaneously on a particle are
together equivalent to a gingle force F = P + Q.

By similar reasoning we can conclude that the simultgneous
- action of two or more forces on a particle produces the same motion as a
single force equal to their vector sum.

A further conclusion reached from the law of addition of forces
and the law of motion is that the acceleration produced at a given time
by the simultaneous action of several forces is equal to the vector sum
of the accelerations produced by the individual forces acting separately.
As & result, we can write a set of scalar equations which are ‘together
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equivalent to the single vector equation in stating the law of motion.
As an example, we can write for the case of a particle in a Cartesian
inertial system:

F.o = mx
Fy = m&i (1-31)
F, = mz

where the total external force is

Fal, I+E, J+¥ K (1-32)

and the total acceleration is
BE=XxXT+y3J+zKk (1-33)

D'Alembert's principle. Newton's law of motion given by Equa
tion (1-28) could have been written in the form :

'F -ma =0 (1-34)

If we consider the term - m a to be another force, known as the "inertial
force" or the "reversed effective force", then Equation (1-3L4) can be con-
- sldered as an equation of statics and the methods of statics can be applied
to the system. For some problems, this slightly different viewpoint is

Figure 8

helpful, but care must be tsken in its use. In particular, one must be
careful not to confuse inertiasl forces with the real external forcee applied
to the particle. We will always designate real forces by a solid arrow and
inertial forces by a dashed arrow.

Another approach is to think of the inertial force as & reaction
force exerted by the particle on the outside world in accordance with the
law of action and reaction. This viewpoint is convenient when the motion
of a particle is given and one desires to calculate the force it exerts on
the remainder of the system. An exemple of this sort will be given in Chap-
ter 2.



CHAPTER 2

KINEMATICS OF A PARTICLE

Kinematics is the study of the motions of particles and rigid
bodies, disregarding the forces associated with these motions. It is
purely geometrical or methematical in nature and does not involve any
physical laws such as Newton's laws.

In this chapter we will be concerned primarily with the kine-
matics of a particle, that is, with the motion of a point. Depending
upon the circumstances we may.at times choose to consider the point as
being attached to a rigid body and at other times as being the location
of an individual particle. In any event, we will be interested in cal-
culating such quantities as the positidn, velocity, and acceleration
vectors of the point with respect to various reference frames.

From the viewpoint of kinematics, there are no preferred frames
of reference and, therefore, we might exbect the general equations to
reflect this property. On the other hand, the principal application of
these equations will be the determination of motions with respect to an
inertial frame. For this reason some of the following developments will
be mede .in & more restricted sense than the nature of the subject requires.

2=1. Angular Velocity

The meaning of angular velocity. In the study of the kinematics
of a particle one is frequently faced with the calculation of time deri-
vatives of vector quantities, and, as we have seen in Equation (1-26),
this mey involve the rates of change of unit vectors, i.e., their rotation
in space. Also, these vector quantities may be viewed from various re-
ference fremes thet are in relative rotational motion. So it is important
to understand the nature of these motions and, in particular, to understand
the meaning of angular velocity.

First, note that the term "angular velocity" implies a reference
frame from which the angular velocity is measured. In general, measure=
ments of the angular velocity of an object made from different frames of
reference produce different results. Second, angular velocity refers to
the motion of a rigid body, or, in essence, to the motion of a set of three
regidly connected points that are not calinear. The term has no unique
meaning for & point or a straight’ line (or a vector) when one thinks in
terms of three-dimensional space.

=15-
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Since angular velocity is concerned with the motion of rigid
bodies, it will be helpful to borrow some of the results that will be
explained more fully when the kinematics of rigid bodies is discussed
in Chapter 7. Iet us consider the general motion of a rigid body with
respect to a given reference frame. The velocities of all points in
the rigid body are known if one specifies the velocity of a single point,
called the base point, and the angular velocity of the body about that
point, In other words, if one analyzes an infinitesimal displacement
occurring during an interval At, it can be considered as.the super-
position of two separate displacements: (1) a translational displace-
ment As (ell points in the body having identical displacements along
parallel lines), plus (2) a rotational displacement AB about an axis
through the base point, the base point being considered as fixed. The
infinitesimal angular rotation A8 is a vector whose magnitude is the
angle of rotation and whose direction is along an axis determined by
those points not displaced by the infinitesimal rotation. The sense
is in accordance with the right hand-rule. The angular velocity is the
vector '

lim g

©E At 50 A6

(2-1)

Now if we should analyze the same infinitesimal displacement
of the body, but choose a different base point, we would find that only
the translational part of the motion would be éhanged; the infinitesimal
rotation would be identical. Thus we can see that the angular velocity
is & property of the body as a whole and is not dependent'upon the choice
of g base point. Therefore, the angular velocity W is & free vector.

Rigid body rotation about a fixed point. In order to concentrate
upon the rotational aspects of the motion, assume that the base point of
the rigid body is fixed at the origin O of a Cartesian system. Let us
calculate the velocity ¥ relative to the xyz system of a point P fixed
in the body. For simplicity we could think of the xyz system as being
fixed in inertisl space; in which case V- would be the absolute velocity
of P and w would be the absolute angular rotation rate of the body.

Consider first the case where rotation takes place about a fixed
axis, corresponding to & fixed direction of w, as shown in Figure 2-1.
The path of point P in this case is a circle of radius r sin 8, and its
speed;is given by :

& = wr sin © (2-2)

where s 1is the displacement along the path of-P, W is the magnitude

1. Speed is the magnitude of the velocity and therefore is a scalar

qQuantity. Sometimes, however, the term "velocity" is used in this
. sense.
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Figure 2-1
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of @, r is the constant length of the position vector drawn to P from
0, and © 1is the angle between W and T. The velocity of P is

T=GxT (2-3)

Equation (2-3) is also valid for the case where & is chang-
ing in magnitude or direction at a finite rate. In other words, the dis-
placement of a point in the body during an infinitesimal interval is not
affected by changes in. w during that interval.

2-2. Time Derivative of a Unit Vector

We have obtained the rate of change of the position vector of
a point P _in a rigid body which 1s rotating about a fixed reference
point O. A similar situation exists in the calculation of the rate of
change of unit vectors. As was the case with the position vector to point
P, +the unit vectors are each of constant length. Furthermore, we have
seen that the time derivative of a vector can be interpreted as the velocity
of the point of the vector when the other end is fixed. BSo let us calculate
the velocities of the unit vectors e;, ep, and e3 drawn from the origin
of the fixed system X Y Z and rotating together as a rigid.-body with
sbsolute angular velocity w. (See Figure 2-2).

X

Figure 2-2

. From Equation (2-3) we see that the velocities of the tips
of the unit vectors, i.e., their time rates of change are

_KE
5 ey

o
'—I
[}

e =B X &, | o (2-W)

V]
w
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£l
]
(1]
o
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As an example, let us calculate the rates of change of a
Cartesian set of unit vectors I, J, X which are rotating with angular
velocity w relative to X Y Z. From Equation (2-4), setting &; =T,
ep = J, and e3 = k, we find that

T=GxT
T=ax7 (2-5)

WXk

I

k

For the case where the vectors are expressed in terms of
orthogonal components we can write the vector product in the form of a
determinant. Thus if

i A7 El + A 32 + AS 33 (2-6)
and

B

By € + B, e, + By 53 (2=7)

and if the unit vectors form an orthogonal triad, then

;a e %{
x3 =;M Ao %1 (2-8)
;Bl 32 Bsi

Applying Equation (2-8) to the case at hand, as given in
Equation (2-5), and noting that

w = Wy i + Wy J o+ Wy, k (2-9)
we obtain
I 7 E
i= Wy Wy uz! =wg J - wy-E (2-10)
L, @ Oi
Similarly,
T=w k-0 T (2-11)
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and
Eww,T -3 (2-12)

In each case the time derivative of the unit vector lies in a
plane perpendicular to the vector, which follows directly from the de-
finition of a vector cross product.

It is important to observe that we have in each case calcu-
lated the rate of change of the unit vector with respect to a fixed
coordinate system X Y Z but have expressed the result in terms of the
unit vectors of the moving system. This sort of approach will be used
extensively in our later work, and the terminology involved should be
made clear. The terms relative to or with respect to a given system
mean as viewed by an observer on that system. On the other hand, the
term referred to a certain system means that the vector is expressed in
terms of the unit vectors of that system. For example, the absolute
acceleration of a certaln particle can be expressed in terms of the unit
vectors of a fixed or of a moving coordinate system; in either event we
are considering the same vector. However, the acceleration of the
particle relative to a fixed and relative to a moving coordinate system
would be in general quite different.

2-3. Velocity and Acceleration of a Particle in Several Coordinate
Systems

Cartesian coordinates. Suppose that the position of the
particle - P relative to the x y z system is given by the vector

+yJ+zk (2-13)

i

T =x
Differentiation with respect to time gives
Fubeste i Byt 3y ok
or
T =xI + y] + 2k : (2-1L4)
since the unit vectors are constant in magnitude and direction, and thus,
their time derivatives are zero. Differentisting again with respect to

time, we obtain

Esf M (2-15)
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Figure 2-3

Cylindrical coordinates. 1In this case the position vector of

P is
T = rgr + ze, (2-16)

Differentisting with respect totime, we obtain

P4
-

V =T =rTe, + ze, + re, + ze, (2-17)

I

It can be seen that the unit vector triad does not retain the same orien-
tation in space as the particle moves. It rotates with angular velocity

BegE, (2-18)

Therefore, we obtain from Equation (2-4) that

=95y
Eﬁ = - E& (2-19)
E:Z = 0
resulting in
¥ =16, + 1 ey + 7€, (2-20)

Another differentiation with respect to time results in

LX) &

EeTa e * (2 é +r 5)6# + ;EZ + fér + r Qéﬁ



which can be simplified with the aid of Equation (2-19) to give

a=(F-r@®)E. + (v P+ 2if) + Z %, (2-21)
z
P
or z
y
P g,

¢

o]

Figure 2-4

Spherical coordinates. The position wvector in spherical coordi-

nates 1s simply

T=EE, (2-22)

The angular velocity of the unit vector triad is

E:g;‘@ + B

z ¢

(2-23)

]

Figure 2-5
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vhere € is a unit vector in the positive 2z direction. Taking components

— 2 o e
of ¢ e, in the €y and eg directions, we obtain

w = ﬁ cos © ep - ﬁ sin © Eé + 6 Eﬁ (2-24)

Now, the unit vectors are orthogonal so we can use the deter-
minant form for obtaining the cross product.

. oy Ty
éﬁ =wxe, = %ﬁ cos8 - b sing ©
j L 0 0
or
€. =968, +¢sine e (2-25)
By a similar process
g = - 6%, +§ cos 65y (2-26)
é¢ = - ﬁ sin © €. - ﬁ cos © &g (2-27)

S50 now we can evaluate the velocity
Yy =r=21r €n +r e,

or

¥

1|

Te,+1r0 eg+r @ sin @ E¢ (2-28)

Differentiating again with respect to time and substituting from Equa-
tions (2-25) through (2-27) for the derivatives of the unit vectors we
obtain

T=(r-r62-r¢2sin®o) T, (2-29)
+(re+2re-r QE sin @ cos e)Eé
+(rfsine+2rfsino+2r o6 ¢ cos Q)E¢

Tangential and normal components. The velocity and acceleration
of a particle P as it travels on a curved path through space may be
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expressed in terms of tangential and normal unit vectors. Let us assume
that the position of the particle is given by the distance s along the
path from a reference point. At any moment, we can calculate the velocity
and accelaration of P by considering it to be traveling on a circular
arc whose center is at the instantaneous center of curvature C and whose
radius P is equal to the radius of curvature. Then the velocity is
given by

v =38 e (2-30)

where Ef is a unit vector tangent to the path at P and in the direction
of the motion.

Figure 2-6
Let us define a second unit vector e, in the direction of
the line drawn frém P to the instantaneous center of curvature 2;

i.e., in the direction of the principal normal. The third member of
the unit vector triad is given by

e, =ey X e, (2-31)
and points in the direction of the binormal of the curve,
The unit vector triad rotates with an angular wvelocity
Ww=w;ep T w ey (2-32)

There is no normal component of w because e, is defined to lie in the
osculating plane, that is, in the plane of an infinitesimal arc at P.
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o

Now, we can calculate the rate of change of

£
E‘t = :DE -é"t = wb El’l (2‘33)
where
wh = E (2_3!“')
P
giving
o =27, (2-35)

Finally, the acceleration of P is found by differentiating
Equation (2-30) with respect to time and making use of Equation (2-35).

L ® P

: 2
E=56 +85e =8 t+§.zn (2-36)
2-4. Velocity end Acceleration of a Point in a Rigid Body

In Section 2-1 we calculated the absolute velocity of a point
in & rigid body that is rotating about a fixed base point. Now consider
the case where the base point A has a velocity ?a with respect to the
inertial system XYZ and also is rotating with angular velocity W rel-
. ative to this sytem. The absolute velocity of point P is

v o= i@ + Vpp (2-37)

where Vp, is the velocity of P relative to A as viewed by an
obgerver fixed in the XYZ system. A

“ | _

Figure 2-7



-26-

It is important to realize that the velocity of P relative
to A will be different when viewed from various reference frames in
relative rotational motion. Therefore, a statement of the relative
velocity of two points should also specify the reference frame. An in-
ertial frame will be assumed if none is stated explicitly.

The velocity Vpp can also be considered as the velocity of
P as seen by an observer on a nonrotating system that is translating
with A. Thus, we can use Equation (2-3) to obtain

;PA = a X 5 (2_38)

which combines with Equation (2-37) to give

V=V, +Bxp (2-39)

The acceleration of P 1is obtained by differentisting Equa-
tion (2-38) with respect to time.

(2-k0)

ol

+wXp+wx

<l

v = A

Since p 1is a vector of constant magnitude and is fixed in the body, its
derivative is

—wxp (2-41)

ol bl

Substituting Equation (2-41) into Equation (2-40) we obtain the absolute
acceleration of P.

a=aytwxp+wx (Wxp) (2-k2)
2-5. Vector Derivatives in Rotating Systems

Suppose that a vector A is viewed by an observer on a fixed
system XYZ and also by another observer on a moving system designated by
the unit vector triad @e;, €p, €3, which is rotating with an angular
velocity w relative to XYZ. No generality is lost by taking a common
origin O.

At any instant, each observer might express the vector A in
terms of the unit vectors of his system, and thus each would give a dif-
ferent set of components. Nevertheless, they would be viewing the same
vector and a simple coordinate conversion based upon the relstive orien-
tation of the coordinate systems would provide a check of one observation
with the other,
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Figure 2-8



. But 1if each observer were to calculate the time rate of change
of A, the results would,in general, not agree, even after performing the
T PR 3Ieanrﬂinate conversion used previously. To clarify this point, recall from
i Equatfon (1-26) that the rate of change of A relative to the fixed system
Pirye ! (but written in terms of the unit vectors of the rotating system) is

A=A + Ay, 4 Az eg+ A ep + Ayep+ Ajeg (2-43)
Hone;er, the rate of change of A relative to the rotating system is
(X) Al e + Ag ep + A3 E3 (2-4k4)

 3éi£eeTthe.unit vectors are fixed in this sytem. Using Equation (2-4) and
remembering that multiplication of a vector is distributive, we obtain

Ay éi + Ap éa + A3'é3 = wx A (2-L5)

= E Therefbre, from Eguations (2- 43) through (2-45), we find that the absolute
f;\ . rate of change of A can be expressed in terms of its value relative to a
e rotating system as follows:

A=(&), +uxA (2-46)

has

e';pwhage w is the lbsolute angular velocity of the rotating system.

B > Since the result of Equation (2-46) is based upon kinematics
vi_-iglgpe, and not upon physical law, we need not consider either system as

¥ ';-bains more fundemental than the other. Therefore, if we csll them system
: 'Ajhﬁd system B, respectively, we can write

)y = B+ Ty x5 (2-47)

S ﬁhefE* EbA is the rotation rate of system B as viewed from system A.
Since the result must be symmetrical with respect to the two systems, we

' :could also write

(A)B = (A)A + wp X A (2-48)

where, of course,

“"‘AB = "'EJBA (2-11-9)

: 2—6.__Motion-of,aﬂ?artiele in a Moving Coordinate System.

o -_7'-.; _ Now we will use the genersl result of Equation (2-L46) to obtain
‘&gﬂ LA the eqpaticns for the sbsolute velocity and accelerastion of a particle P
£ e s thgthis in mntion_relative to a moving coordinate system.
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The system XYZ is an inertial system. The xyz system 1s rotating
with with absolute angular velocity'a and its origin O 'moves relative to
XYZ. If T is the position vector of P and R is the position vector of 0',
both relative to 0, then

r=R+p (2-50)
where p is the position vector of P relative to 0'.

Differentiating with respect to time we obtain the absolute
velocity. '

T=T=R+p (2-51)

But the derivative ﬁ can be expressad in terms of its value relativeto
xyz by using Equation (2-46), resulting in

o=(p),+uxDp (2-52)

Then, from Equations (2-51) and (2-52) we obtain that

Y=R+(p) +woxp (2-53)

r

To obtain the absolute acceleration of P, we find the rate of
change of each of the terms in Equation (2-53), as viewed by an observer

Figure 2-9
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fixed in system XYZ. Equation (2-46) is used in the differentiation of
the last two terms where vectors relative to the rotating system are
desired.

Thus we cbtain

d il it}
% () =R (2-54)
.d_i [(p)r] )y + v x (p), (2-55)

E%(:axa)=axa+ax('5)r+ax(;x;) (2-56).
Adding equations (2-54) through (2-56), we find the absolute acceleration
of P.

a=R+(p) +uxp+ux @xp) +2x (), (2-57)

Note thet w, as well as w, is the same vwhen viewed from
either coordinate system, i.e., w = (w), &nd also w = (w)_, the latter
because © x w = O.

The nature of each of the terms comprising the total accelera-
tion is as follows:

R is the sbsolute acceleration of the origin 0' of the moving
system.

(p)y 1s the acceleration of P as viewed by an observer on the
moving system.

W x p is the tangential acceleration of P (more properly, the
rate of change of tangential velqcity) due to a changing magni-
tude or direction of w.

W x (W x Pp) is the centripetal acceleration of P due to W,
considering P fixed at its instantaneous position relative to
xyz and ignoring any centripetal components of R,

2w x (E)r is the Coriolis acceleration of P. It comes from
two sources. The term in Equation (2-55) is due to the Shgnging
direction in space of the velocity relative to the moving system.
The term in Equation (2-56) is the rate of change of the tangen-
tisl velocity due to changing megnitude or direction of the posi-
tion vector p relative to the moving system.

2-7. Examples
' Example 2-1. A rigid tube of length 24 rotates at & constant
rate sbout a transverse axis through its center. A particle P moves at
a constant speed v relative to the tube.
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a. ©Solve for thé absolute acceleration of P 1in terms of the
unit vectors € and E¢. :

¥

b. BSuppose that water of density p 1is introduced through the
axis of rotation and flows radially out each end with relative speed  v.
For a tube of unit internal cross- sectlon, find the external moment neces-
sary to rotate the tube at constant w.

Axis of rotation

Figure 2-10

The solution to part (a) can be obtained directly from Equa-
tion (2-21) giving the acceleration in a cylindrical coordinate system.
Noting that

r = Vv = constant
and .
g = w = constant
we obtain
== 2 —
a=-rue, +2VvVuo &g (r > 0)

the first term being the centripetal acceleration and the second term
being the Coriolis acceleration of P.

For part (b), consider a mass element p dr at P. We saw
in part (a) that it has a tengentisl acceleration.

a¢ = 2 vw
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and, therefore, a tangential force component
dFQ = 2p v uwdr

must be applied to it in accordance with Newtoh's laws. Taking the
moment of this force about the axis of rotation and integrating, we
find that the total applied mgment (counter-clockwise) is

M=2 \/FE pvwrdr =2 pﬁng
; o . _

where the integral is taken over half the tube and then doubled. We
have omitted consideration of the radial component of acceleration be-
cause it is associated with radial forces which have no moment about the
axis of rotation.

Example 2-2., Suppose that a partiéle P moves slong a line
of longitude on a sphere of radius a rotating at constant w. If its
speed relative to the sphere is

v =kt

Figure 2-11

and if the center of the sphere is fixed, find the absolute acceleration
of P in terms of gpherical unit vectors

Er, Eg’ Eg- Ile‘tl 9(0) - Ool
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In solving this problem first note that

0 = Y.kt
a a
from which we obtain that
2
e=eo+§
Also
r=a

b s

The angle ¢ does not enter the probilem because the unit vectors rotate
with the sphere.

Performing the necessary differentiations and substituting into
the general acceleration equation in spherical coordinates, Equa.tion (2- 29),
we obtain the accelerstion components

L}

we 2
a. =71 - ré® - r Q sin® o EEE— - & w2 sin® @

2

r-9.+2:r"é-_rﬁasin90059=k-&w sin © cos ©

%
%

giving the acceleration

oe

¢sin9+2r¢51n9+2r9¢0059 2k wt cos @

' 2.2
g = (- EEE - & ° sin® ) e +(k-a wPsin © cos 0)&,

+ (2 kut cos 9)3?
_ Now let us solve this exemple using the general vector relation
for a moving coordinate system as given in Equation (2-57). Choose the

moving coordinate system to have its origin at O and to rotate with the
sphere at angular velocity w. Evaluasting each of the terms we find that

-
2,2
.. - kTt '
(p)rz-—a e-l-kee
wxp
(0 x p) = a «sin & (- sin © e, - cos © Eé)

2ux (p)p=2kuwt cos@€¢



-3k4-

Adding these terms we again obtain the result given above.

Example 2-3. Find the acceleration of point P on the circum-
ference of a wheel of radius r, rolling on the inside of a fixed circular
cylinder of radius r;. An arm connecting the fixed point O and the
wheel hub at 0O' moves at a constant angular velocity w. The position
of P relative to the arm is given by the angle .

The solution will be found with the aid of Equation (2-57),
assuming that the moving system is fixed in moving arm with its origin
at the wheel hub O' The unit vectors e; and e, rotate with the
arm.

Before proceeding further, let us find the relation between
Q and w. As an aid, let us introduce the notion of the instantaneous
center of rotation. We saw earlier in Section 2-1 that the instantaneous
velocities of all points in a rigid body are known if, at a given time,
the velocity of the base point and also the angular velocity of the body
are known. In case the body motion is such that all points move in parallel
planes, then the body is said to have plane motion. In this case the
angular velocity w has a fixed direction in space that is perpendicular
to the parallel planes of particle motion. Also, at any given time, it is
possible to find an instantaneous axis of rotation that is fixed in space
and sbout which the rigid body appears to be rotating with angular veloc-
ity w. For an essentially plane body moving in its own plane, this re-
duces to rotation sbout a stationary base point known as the instantaneous
center of rotation.

In the example being considered here, we have a particular type
of plane motion known as rolling motion, in which there is no relative
motion between two bodies at their point of contact, i.e., there is no
slipping. Since one of the bodies (the cylinder) is stationary, the point
of contact C on the wheel must also be stationary and is thus the instan-
taneous center of rotation.

The absolute velocity of any point on the wheel may be calculated
by considering the motion to result from rotation at its absolute angular
rate about its instantaneous center C. So the velocity of the hub 0' is

'V'01 = rg(ﬁz - u)‘ét

since the absolute angular velocity of the wheel is the sum of its angular
velocity relative to the arm and the absolute angular velocity of the arm.
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But the velocity of O' can also be calculated by considering
the arm alone.

?0| = (1"1 = 1'2) Ll.'u-ét

From these two equations we obtain that

g =

w

|
(NI

Now let us proceed with the evaluation of the absolute accelera-
tion of P, using Equation (2-57). We find that

R = (r1 = 7p) u2§n
which is Jjust the centripetal acceleration due to the uniform ciycular
motion of O' about 0. Next, we evaluate the acceleration of P relative
to the moving system. It is the centripetal agcceleration due to the uni-
form circular motion of P at the angular rate §. '

®),

. 2 fr— ~ —

rp §° (-cos @ e, - sin @ et)
182
"8
The term ©w x p is zero since w is constant. The acceleration of P

due to the rotation of the moving system about 0' is the centripetal
acceleration

(-cos g &, - sin ¢ &)

wx (wxp) =1p w2 (-cos dgh - sin ¢ Eé)
Finally, the Coriolis acceleration is
2w x (;)r =215 0 ﬁ(cos # e, + sin @ &) \
since the velocity of P as seen from the moving system is
() =7 @ (cos § Ty - singey)

Adding the individual acceleration terms, we find the ebsolute acceleration
of P. 5 r12 o
a=[(r - + co 2 - -~
a = [(r; - rp)uw cos § (2 r] - rp = )w_TEn
2
rl P
+ [sin g (2 1y - rp - ;E)w ] ey
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A few comments should be made concerning the choice of the mov-
ing coordinate system in the sbove examples. Although Equation (2-57) is
valid for an arbitrary motion of the moving coordinate system, it should
be chosen such that the calculations are made as simple as possible.
Roughly speaking, the motion of point P relative to the moving system
should be of about the same complexity as the absolute motion of O,
providing thet the angular velocity w is constant or varies in a simple
fashion. Also, the choice of unit vectors in expressing the result should
be chosen for convenience. With rare exceptions, they should form an
orthogonal set.

When one uses the concept of instantaneous center of rotation
in forming kinemsatic relationships, much care should be taken if quan-
tities other than velocities are being calculated. In particular, it
should be pointed out that even though the instantaneous center is
stationary, its acceleration may not be zero. For example, when a wheel
rolls along a straight line, the point on the wheel at the instantaneous
center of rotation has a centripetal acceleration of m tude rw® even
when its velocity is zero. Its path in space is a cyfzgii and the point
becomes the instantaneous center of rotation when it is reversing its
direction at the cusp of the cycloid.



CHAPTER 3

DYNAMICS OF A PARTICLE

In Chapter 2 we used the methods of kinematics to obtain the
absolute acceleration of a particle and, assuming a knowledge of its
mass, we were able to calculate the total external force acting on the
particle by using Equation (1-28). In this chapter we will consider
the reverse problem, namely, the problem of calculating the motion of
a particle from a knowledge of the external forces acting upon it.

First, let us consider the general case where the force acting
on a particle is a function.of its position and velocity and the time.
From Bquation (1-28), its differential equation of motion is

.

mr = F (T,F,t) (3-1)

Knowing the function F (r,r,t) and the mass m, we would like to solve
for the position r as an explicit function of time. Unftrtunately,
an analytic solution of this equation is impossible except in special
cases.

To see the difficulties more clearly, let us write the vector
equation in terms of its Cartesian components.

mx FK (X).Y: Z3X3Ys Z)t)

my = Fy (2,¥,2,%,¥,2,%) (3-2)
mz = Fz (x,y,z,i,jr,é,t)

The force components Fy, Fy, and Fz are, in general, nonlinear functions
of the coordinates, velocities, and time, and thus the equations are hope-
lessly complex from the standpoint of obtaining an analytical solution.

Nevertheless, it is the thesis of Newtonian mechanics that a
complete knowledge of the forces on a particle determines its future motion,
providing that the initial values of displacement and velocity are known.
(Using Cartesian coordinates, this would imply six initiel conditionms.)

So a solution to the problem does, in fact, exist. With the aid of modern
electronic computers, and using approximaste methods, it is possible to ob-
tain solutions to the complete equations that are of sufficient accuracy
for engineering purposes.

._39..



Any general analytical solution of equations of the form of
Equation (3-2) will contain six arbitrary coefficients which are evaluated
from the six initial conditions. One method of obtaining the general solu-
tion is to look for integrals or constants of the motion, that is, attempt
to find six functions of the form

fk(x)YJz.‘in}JéJ-b) = ak (k =1, 2! ey 6) (3'3)

where the o are all constant. If the functions are all distinect, i.e.,
none are deriveble from the others, then in principle they may be solved
for the displacement and velocity of the particle as a function of time
and the constants Q.

It is normally not possible %o obtain all the 0 by}any direet
process. However, one of the principal topics of-advanced classical mechan-
ics is the finding of proper coordinate transformations such that the solu-
tion for the constants in terms of the new coordinates is a straight- '
forward process.

Sometimes the constants of the motion can be given a simple
physical interpretation, thereby giving us more insight into the nature
of the motion. For example, a constant might be the total energy or the
angular momentum sbout a given point. Even in cases where we do not
completely solve for the motion, a knowledge of some of the constants
that are applicable to the given problem may help us to obtain results
such as limiting wvalues of certain coordinates.

In this chapter we will discuss some of the simpler methods .
and principles to be used in solving for the motion of a particle. As
will be seen in the following chapters, these principles can be expanded
to apply to systems of particles and to rigid body motion, and will thus
form an important part of our treatment of the subject of mechanics.

3-1. Direct Integration of the Equations of Motion
Returning now to the general equation of motion as given by

Equation (3-1), we will consider several cases in which a direct inte-
gration can be used to find the motion of the particle.

-

Case 1: Constant Acceleration. The simplest case is that in
wvhich the external force on the particle is constant in magnitude and
direction. If we consider the Cartesian components of the motion, we
f£ind from Equation (3-2) that

mx = Fy
my = Fy (3-%)
mz = F ' ;

where F,, Fy, and F, are each constant.
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We see from Equation (3-4) that the motions in the x, y, and z
directions are independent, so now let us consider juét the motion parallel
to the x-axis. Denoting the x components of acceleration and velocity by
a and v, respectively, we find that

F
X
& = (3-5)
and, by direct integration with respect to time, we obtain thaﬁ
v=v,+at (3-6)
and /
s SR, .
X =x%Xg+ Vot + s at (3-7)

where x and v, eare the displacement and ﬁelocity components in the x
direction at t = 0. Of course, similar equations would apply to the motion
in the direction of the y and =z axes.

The time required for the particle to attain a given speed v or
displacement x is found by solving Equations (3-6) and (3-7) for +t.
t =3 (v-vy) (3-8)

[Botng) + %7 - v -9

ol ol

An equation relating speed and displacement for this case of
constant acceleration can be obtained by eliminating the time +t between
Equations (3-8) and (3-9), giving the result

]

v2 = v,2 + 2a(x - x) (3-10)

Case 2: F = F(t). Suppose now that the external force is =
function of time only. Again, the general equation can be written in
terms of three independent equations giving orthogonal components of the
motion. For example, if we consider only the x component, the equation
of motion becomes,

mx = F,(t) | (3-11)

which can be integrated directly to give the displacement
t te

X = XO + Vot +%'.1[[JFX (jtl)dt‘l :l dte (3-12)

where again vV, 1s the initial velocity component in the x direction.
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Case 3: F =F (x)T +F (y)J + Fflz(z)f. For this case we will
again consider only the x component of the motion, noting that similar
results apply to the motion in the y and z directions. The differential
equation for the motion is

mx = Fx(x) ' - (3-13)
Making the substitution
X =v ' (3-14)
we find that
e dv dv dx dav
=g T =V (3-15)

From Equations (3-13) and (3-15) we find that

nv %% = Fx(x) (3-16)

which can be integratéd directly to give

m (2 2 x

B (2 - v,2) = [ Ee()ax (317
o

This result is a special application of the general principle of work and
kinetic energy, as we will see in Section 3-2.

Equation (3-17) can be integrated again to give a solution of
the form

Pl Toi2) = & - (3-18)
from which we can obtain
x = g(xq, Vo, t) (3-19)

Suppose, for example, that the force is derived from the exten-
sion of a linear spring, i.e.,

F, = -kx | (3-20)
where k is a constant. Then

.4
z (v - v,B) = -f kx dx = - -é- k(x> - xoe) (3-21)
o)
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From Equations (3-14) and (3-21) we can write

dx _ 2 .k ( 2 _ 9)
EE = \f¥ 2 (x5 - x
dt ¢0 m 2

' X .
}.nzf dx o b
N s VmVOEL 2 2

o = af
k

or

(@]

This can be integrated to give

\/%[sin_l (X/\/r_kn v02 + xog) - gin™t (xo/\/% VOE + xog) .}; t

or

* =JE v‘oe + xoe sin (\/% t + Q) ‘ (3-22)

where

o = sin™t (){O/\/E VOE + x02 (3+23)

This is the solution for harmonic motion in one dimension with
arbitrary initial conditions.

Case 4. F =F ()i +F (y)J+ FZ(Z)E. In the analysis of this
case we will again consider just the x component of the motion and note that
similar results apply to the other comporents. The egquation of motion is

dv _ o
m d—E = FX(V)- (3-24)

from which we obtain

<

mf FXT%VT =t (3-25)

Equation (3-24) can also be written in the form

mv %% = F (v) (3-26)
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from which we obtain

v
v_dv _ _ r o
mﬁ/ﬂ —;Tﬁj X - X (3-27)
o]

By eliminating v between Equations (3-25) and (3-27) we cen solve for x
in the form

x = £(xgs Vor t) (3-28)

This result can also be obtained by solving EQuatiOn (3-25) for v as a
function of t and then integrating again to obtain x as a function of t.

As an example of Equation (3-24), let us consider the one-
dimensional motion of a particle moving against a linear damping force, i.e.,

F (v) =-cv ' (3-29)

where c¢ 1is a constant. In this case

v
m av
: Ek/ﬁ g =
Yo
or
S s.2%
VQ - m
which can also be written
ct
=
vV =vge (3-30)

Integrating again with respect to time we obtain

= et .
m
X = X + %vo(l -e ) (3-31)

From Equation (3-27) we can obtain the expression relating speed and dis-
placement, namely,

2 (vg = V) =% - xg (3-32)

which can be verified from Equations (3-30) and (3-31).
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3-2. Work and Kinetic Energy

‘We turn now to the presentation of some of the general principles
of particle mechanics. For the cases where these principles apply, they
are directly derivable from Newton's laws of motion and thus contain no
new information. - On the other hand they promote further insight into the
nature of particle motion.

The first of these principles to be presented is the principle
that the increase in the kinetic energy of a particle in going from one
point to another is equal to the work done on the particle by the external
forces acting over the same interval.

Suppose, for example, that a particle of mass m moves from A to

B under the action of an arbitrary force F, as shown in Figure 3-1. Start-
ing with Newton's law »

we form the line integral over the path from A to B.

B B _
I F-ar = f m F-d7 (3-33)
A
But -
& (r.r) =gr &
dt T
So
B B _
f. n FdF = %f a(ve) =3 (vg¥ ~ vp?) (3-34)
A A

k/ﬁ F.dr = % m vBe -=n VA? (3-35)



Figure 3-1

The integrel on the left side of this equation is the work done on the
particle by the resultant of the external forces as the particle moves
over the path followed from A to B.

B .
. =\jp T (3-36)
A

In general, the kinetic energy of a particle relative to an
inertisal system is

m ve (3-37)

=

T =

where v 1s the speed of the particle relative to that system. Therefore,

the right side of Equation (3-35) represents the increase in kinetic energy
in going from A to B.
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Using Equations (3-36) and (3-37) we could write Equation (3-35)
in the form "

W=Tg - Ty | (3-38)

It should be emphasized that calculations of work, kinetic
energy, and also changes in kinetic energy are dependent upon which in-
ertiel system is used as a frame of reference. On the other hand, measure-
ments of force and also of time (in Newtonian mechanics) are the same for
all observers. '

Example 3-1. Suppose that a whirling particle of mass m 1is
pulled by a string toward a fixed center at 0 in such a manner that the
radial component of velocity is small compared to the tangential compon-
ent. Also, r can be neglected relative to the centripetal acceleration.

L]

Find the change in the angular rate w as 1r decresses.

0 (fixed point)
Figure 3-2
We will use the principle of work and kinetic energy to solve

this problem. With the asbove assumptions the acceleration of the particle
is entirely centripetal and the total external force is the radial force

e 2 i
Fr = -MmT W

The work done on the particle in an infinitesimal displacement dr is

dw = Fr dr = =-m m2 r dr

This must be equal to the change in kinetic energy

T =mvdv =nm r w(w dr + r dw)

found by differentiating Equation (3-37).



The principle of work and kinetic energy applies to infinitesimal
changes and states that '

aw = 4T
or

—mm2 r dr = mm2 r dr + mr2m dw

which can be rearranged and integrated in the interval s to r, corre-
sponding to the angular rates w, and w.

(o]
r w
dr dw
To Wo
or
-2 1n(X) = 1n(®)
To Wo

from which we obtain

We could also have written the final result in the form

Fe

2. - 2
nr-w = mrow,

which is in agreement with the conservation of angular momentum principle
to be developed in Section 3-6.

3-3. Conservation of Mechanical Energy.

Referring again to Figure 3-1, let us suppose that the force F
acting on the particle has the following characteristies: ‘

(1) it is a function of Bosition only, and

(2) the line integral [ F:dr is independent of the path taken
between A and B.

This last statement also implies that

f FodT = 0 (3-39)
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where the integral is taken around any closed path. In other words, the
work done by the force F 1in going around an arbitrary closed path is zero.
Furthermore,

- !
f R -jm‘f (3-40)
A B

s0 that reversing the direction of travel along a given path merely changes
the sign of the work done.

A force with the above characteristics is said to be a conserva-
tive force, i.e., it forms a conservative force field. Practically speak-
ing, this means that the force is not dissipative, and that any mechanical
process Laking place under its influence is reversible.

So, if W , as given by Equation (3-36), is found to depend
only upon the location of the end points, then the integrand must be an
exact differential.

Fedr = -dV (3-41)

where the minus sign has been chosen for convenience in the statement of
later results.

Therefore, we find that
W =f F-dr = -fdv =Vy - VB (3-42)

which may be combined with Equation (3-38) to give
Tp+Vy=Tg+ Vg =E (3-43)

where E 1is the total energy. The scalar V is a function of position
only for a given particle and is known as the potential energy of the
particle. The difference in potential energy values between any two points
indicates the amount of work done by the conservative force field on the
particle as it proceeds from one point to the other, as can be seen from
Equation (3-42)., The total energy E is constant for a conservative
system and is the sum of the kinetic and potential energies.

Equation (3-43) is a mathematical statement of the principle of
conservation of mechanical energy and applies to systems in which the only




forces that do work on the particle are those arising from a conservative
force field. Workless forces such as those arising from frictionless,
fixed constraints do not change the applicability of the principle.

3-4, Potential Energy

Now let us take a closer look at the potential energy function
V. We saw that V is a function of position only. So, if we express
the position of a particle in terms of its Cartesian coordinates, we find
that

ov oV ov
dv-ad.x+a—ydy+§gdz (3-4k)
Also we note that
F.aF = Fy dx + Fy dy + F, dz (3-45)

From Equations (3-41), (3-44), and (3-45), we find that

oV
Fy = - ox
__ov
F, = - e (3-46)
v
e " " %

since the equality holds for an arbitrary infinitesimal displacement.
Therefore,

= = s = oV _ oV _ oV e
F=F,1+T7F H T K e, iy - 3-4
X ' J Z ax ayj aZ ( T)

But the gradient of the scalar function V can be written as

=§§T+-§-§j+§%1‘i (3-48)

So we find that the force at any point due to the conservative force field"
is '

v

F=-7V (3-49)

This means that the force is in the direction of the largest spatial rate
of decrease of V and is equal in magnitude to that rate of decrease.

Equation (3-49) is a general vector equation, so the gradient
need not be expressed in terms of Cartesian coordinates. For a general
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orthogonal coordinaste system, the component of the force F in the direc-
tion of the unit vector e; is given by '

s Y
Ox;

Fl = (3-50)

where X is the linear displacement in the direction Ei at the point
under consideration,

Inverse-square attraction. As an example of a potential energy
calculation, consider the case of the inverse-square attraction of a particle
of mass m toward a fixed point. The force exerted by the attracting field
is entirely radial and is equal to '

T =3 ™ g2 (3-51)

where r 1is the distance of the particle from the attracting center. Since
the force is a function of r only, we can integrate Equation (3-51) di-
rectly to give

S
Ir

+C (3~-52)
where C  is the arbitrary constant of integration. In the usual case

we choose C =0, implying that the potential energy is always negative
and approaches zero as r approaches infinity.

_ The fact that the potential energy contains an arbitrary con-
stant would seem to require that all measurable quantities of the motion
such as velocity, acceleration, etc., should be independent of the choice
of C since the motion in a given situation is not arbitrary. That this
is actually true is confirmed by the fact that potential energy enters all
computations as apotential energy difference, in which case the constant
C cancels out. The mode of entry into calculations is always essentially
as work, as in Equation (3-42).

As a result, the choice of C, i.e., the choice of the datum or
reference point of zero potential energy, is made for convenience in solv-
ing the problem at hand,

Gravitational potential. The most commonly encountered inverse=
square force in the study of mechanics is the force of gravitational at-
traction. As we have seen, the gravitational potential energy must be of
the form given by Equation (3-52).
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Now let us consider the particular case of gravitational attrac-
tion by the earth. Assuming the earth to be a sphere whose density is a
function only of the radial distance from its center, it can be shown that
the attractive force on an external particle is the same as if the entire
mass of the earth were concentrated at its center.

So, from Equation (3-51) the gravitational force on a particle
of mass m outside the earth's surface is the radial force

K
Fp = -5 (r>R) - (3-53)
r

where R  is the radius of the earth (Figure 3-3). The constant K can
be evaluated from the knowledge that the weight w of the particle is
the gravitationsal attraction of the earth on the particle at the earth's
surface. ' '

K
) (3-54)

-F =W =

=
d

But the weight is also given by
W o=mg : ' (3-55)

where g 1is the acceleration of gravity at the surface of a nonrotating
earch.

From Equations (3-54) and (3-55) we obtain that

Therefore,
2
F, = -ng BE (r >R) - (3-57)
r
and
R2
V = -mg — (r > R) (3-58)

We could also write the potential energy in terms of the height
h above the earth's surface. Letting

r=R+h (3-59)
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r O m
Figure 3=3
we find from Equation (3-58) that
R | | |
V= - mg (3-60)
(1 + g

For motion near the surface of the earth, i.e., for h < < R, this reduces
to

Vm-ng(l-%)_ (3-61)

But we can eliminate the constant term -mg R by choosing the zero reference
for potential energy at the earth's surface. Then we obtain

V = mgh (h < < R) (3-62)
the equation becoming exact for g uniform gravitational field.

This equation is often used in the calculation of local trajec-
tories near the earth's surface, in which case an "inertial" frame is
chosen that is fixed in the earth and the value of g includes earth rota-
tion effects at that point.

Linear spring. Another form of potential energy that is commonly
encountered is that due to elastic deformation. As sn exemple of elastic
potential energy, consider a particle P that is attached by a linear spring
of stiffness k +to a fixed point 0, as shown in Figure 3-4. If the
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elongation x of the spring is measured from its unstressed position,
the particle will experience a force
v
= = = = = kX -
Fy == 3¢ (3-63)
Direct integratioﬁ'wi‘bh respect to x, choosing the zero reference of
potential energy at x = 0, results in

V=L Kx® (3-64)
2 £

Note that in the above development the force F, is the force
of the spring on a hypothetical particle P and not the force of opposite
sign that is applied to the spring. In other words, the emphasis here is
on the potential ability of the spring to do work on its surroundings, and
not vice versa. A similar comment would apply equally well to gravita-
tional potential energy.

3-5. Impulse and Momentum

In Section 3-2 we obtained the principle of work and Kinetic
energy for a particle by integrating both sides of Newton's equation of
motion with respect to displacement. This principle was found to be
particularly useful for cases where the working forces on the particle
are a function of position only.

Similarly, we could integrate both sides of the equation of
motion with respect t% time.

[ fdt=f mrdt =mvp -mvy (3-65)
’ 1 t1

where the wvelocity ?2 corresponds to time t, and ﬁi corresponds to
t1, the time interval being arbitrary. The time integral of the force
F is known as the impulse of the force over the given interval and is
designated by )

?_:[ Fat (3-66)
1

The linear momentum of the particle is the vector mv. There-
fore, we can state the principle of impulse and linear momentum: The
change in the linear momentum of a particle during a given interval is
equal to the impulse of the external forces acting over the same interval.

?= mVy -mvy . (3-67)
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A comparison of this equation with the equation of work and kinetic
energy, Equation (3-38), reveals some interesting qualitative differences.
First, Equation (3-67) is a vector equation whereas Equation (3-38) is a
scalar equation. Its vector nature is an advantage in some cases because
it gives the direction as well as the magnitude of the velocity. On the
other hand, it may be more difficult to work with.

Another point of interest is that the total impulse 4 ( and
consequently the change in linear momentum) is independent of the inertial
frame from which the particle motion is viewed. This is in contrast to
calculations of work and kinetic energy which, as we have seen, are de-
pendent upon the specific frame of reference.

Equation (3-67) can also be written in terms of its scalar

components. For example, if we choose a Cartesian coordinate system
in which to express the motion of the ‘particle we find that

. 2
Jﬁ:[ F,dt =mxp - mx;
1

w7y - m iy (3-68)

s Y
e ¥
]
T
r}.
no
e
o
o,
ct
It

3;=f F,dt =m 2y - m 23
t

where the subscripts 2 and 1 indicate that evaluations of the given velo-
city components are to be made at t, and t;, respectively. Equation (3-68)
follows directly from the equations of motion as given by Equation (3-4).

As a further example of a scalar or one-dimensional form of the
impulse and momentum relationship, consider a particle of mass m moving
over a prescribed path that is fixed in inertial space, as shown in
Figure 3-5. Taking components of force and acceleration along the path,
we find from Equations (1-28) and (2-36) that

F =ms (3-69)

=]



Figure 3-5

where Fs is the component along the instantaneous direction of motion
of the total external force F, and £ is the magnitude of the tan-
gential acceleration. Note that frictionless constraint forces are
normal to the path and do not contribute to Fs'

Integrating Equation (3-69) with respect to time, we find
that

ta
f F, dt =m sp - m 5] (3-70)
&

where 8, and s; refer to the speed of the particle at times t, and
t1, respectively.

Of course, the equation of work and kinetic energy, Equa-
tion (3-35), is directly applicable to this system and becomes, in this

case,
B

1 s 2 .2
J; Fg ds =3m sp - % m S, (3-71)

3-6. Angular Mbméntum

We have seen that the linear momentum of a particle with respect
to a fixed (inertial) frame is the vector mv, where m 1is the mass of
the particle and ¥V 1s its absolute velocity. Now let us consider the
momentum vector mV as a sliding vector whose line of action passes through
the particle. If the position vector of the particle with respect to a
fixed reference point O 1s designated by F, then the moment of momen-
tum or angular momentum ebout 0 is given by

" H=Txmnv (3-72)
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Figure 3-6

Noting that v = T, we can differentiate this equation with
respect to time, obtaining H =T x mr '+ T x mr which reduces to

-

B

=T x

e

(3-73)

since the cross product of parallel vectors 1s zero.

Referring again to the equation of motion

R

F =

let us form the cross product of each side with the position vector T.

rxF=rxmr (3-T4)

L

where the left side of Equation (3-74) is identified as the moment N
about the point O of the totsl externsl force F.

M=rxF (3-75)
From Equations (3-73), (3=74), and (3-75) we obtain
H =N - (3-76)

which is a statement of the important principle that the rate of change
of angular momentum of a particle sbout a fixed point is equal to the
moment about the same point of the external forces spplied to that particle,

For the case where M ies zero, the angular momentum vector H-:

must be constant in megnitude and direction. This is known as the principle
of consérvaetion of angular momentum.
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The general vector relationship given in Equation (3-76) could
aleo be written in terms of its components. For example, choosing a fixed
Cartesian coordinate system, one obtains the scalar equations

.
]

x My
Ho o= My - (3-11)
I.{z = M,

When written in this manner, each equation can be interpreted as relating
the moment and rate of change of angular momentum about the corresponding
fixed axis passing through the fixed point O.

It is interesting to note that, even though the total angular
momentum H is not conserved in a gifén case, one of the components of
M might be zero, that is, the moment about the corresponding axis might
vanish. This would require the angular momentum sbout that axls to be
conserved.

A somewhat similar situation occurs when the motion of a particle
is confined to a plane, in which case the angular momentum becomes essen-
tially scalar in nature since its direction is fixed. If the velocity of
a particle of mass m (Figure 3-7) has radial and tangential components
given by

Vp=rT

(3-78)

‘\?¢ = I'w

where w is the angular velocity of the radius vector as it moves in

the plane of particle motion. The angular momentum is of megnitude
H=rm Vg =m e W - (3-79)

and, in accordance with the right-hand rule, is directed out of the page.-

It is independent of v, since the line of action of the corresponding

component of linear momentum passes through the reference point O and |
thus its moment of momentum is zero.

Now if the mass m is acted upon by radial forces only, regard-
less of their manner of variation, then the applied moment M will be
zero at all times, and therefore, the angular momentum will be conserved.
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Since the particle mass is constant, Equation (3-79) can be used to obtain

r12 wll = r22 Wy (3-80)

where the subscripts 1 and 2 refer to the values of the variable at
arbitrary times ti and té respectively.

0 (fixed point)

Figure 3-7

Returning now to a general discussion of the angular momentum
of a particle, a few more remarks are in order. Since the angular momen-
tum is the moment of the linear momentum vector sbout a given reference
point O, the question arises regarding the proper choice of (1) a refer-
ence frame for calculating the linear momentum vector, and (2) a reference
point O. Eliminating st the outset, the trivial case where point 0 is
chosen t0 coincide with the particle, we can state that the reference
frame must be inertial, and also that the reference point must be fixed in
that frame if Equation (3-76) is to hold for the general motion of a single
particle. This follows from the fact that it is based on Newton's equation
of motion, and also that Equation (3-73) used in its derivation requires
that T and ¥V %be parallel. -

The question reduces, then, to the choice of a reference point
since there is only one inertial frame, at most, in which the point is
fixed. Nevertheless, a proper choice from among the possible reference
points is very important in clarifying a given problem and simplifying
its solution. Often one attempts to choose a reference point such that
one or more components of the total angular momentum is conserved.
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3=T7. Angular Impulse /

In = manner similar to that used in obtaining the equation of
linear impulse and momentum from Newton's equation of motion, we will
now obtain an expression for the change in angular momentum over an
arbitrary time interval. ILet us integrate both sides of Equation (3-76)
with respect to time over the interval 1, 1o tp, obtalning

t2
[ Hdt = ﬁz - ﬁl ' 5 (3-81)
1
and
2
[ Mat = 77 - (3-82)
1 . z

where /M 1is the angular impulse or impulsive moment about a reference
point fixed in inertial space. From Equations (3-8l) and (3-82) we
obtain

TH =8 - H (3-83)

vhich stetes that the change in the angular momentum of a particle over an
erbitrary time intervel is equal to the totel angular impulse of the ex-
ternal forces acting on the particle during that interval, the reference
point being the same fixed point in each computation.

3=8, Exemples

Exemple 3-2. A particle of mass m 1is suspended vertically by

& spring of stiffness Xk in the presence of a uniform gravitational field,
the direction of the gravitationel force being as shown by the arrow in
Figure 3-8, If the vertical displacement y of the mass 1s measured from
its position when the spring is unstressed, solve for y as a function of
time. The mess is released with no veloclty et ¥, L., ¥(0) = y, and
y(o) = 0, TFind the maximum velues of kinetic energy and potential energy
in the ensuing metien,
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The equation of motion can be written with the aid of the free-
body diagram shown in Figure 3-9, indicating that the spring force and the
gravity force are the only external forces acting on the particle. TUsing
Newton's equation we can write

m37 = -ky -mg

or _
ny + ky = -mg

ky
L
m

mgl -

Figure 39

The solution to this differential equation is the sum of the
transient solution y; which is the solution of the homogeneous equation

my + Ky = 0

and the steady state solution y_ (the perticular integral) which a solu-
tion that fits the complete equation. ¥

In this csase

Nt=ClcosJ§ t + Cp sin \Et
and '
o e 8
Ig ™ X
So
b’=3’t+ys=-k%--fclcos\]%t-i-cesing t
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Evaluating the constants C, and Cp from the initial conditions we find
that )

m,
C1 =70 +‘E§

Ch =0

2

The complete solution is
y=-24 (y, +28) cos kg
Y k m

Now let us calculate the kinetic and potential energy for the
system. The kinetic energy is

1 2
T = E'm y2 '

The potential energy is due to the work done against the force of gravity
and also the spring force, both being conservative forces.

b

_ 1 2
V=mgy +:?k y

the reference point for zero potential energy being taken at y = 0. Since
this is a conservative system, the total energy E is constant and equal
to its initial wvalue

E=T+7V =mg y, +.% k yg

It can be seen that the kinetic energy is maximum when the
potential energy is minimum and vice versa, Therefore,

vﬁax =F
since
Thnin =0

On the other hand Vmin is found to occur at

in which case
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and therefore, e

Thus we see that

Vmax = Ymin = Thmax ~ Tmin

even though the extreme values of V are not equal to the corresponding
extreme values of T.

Now let us consider the case where the displacement. is measured
from its equilibrium position. Calling this vertical displacement =z, we
can write

me

in which case the complete solution is

=1}
c'-

Z = Z. COS

where

mg

25 = VYot i

Now let us choose the zero reference for potential energy to be
a.t! & =O, L oy
2 2P

. 1 i w58 1 _mg2 1
V=mgz+35ky 5 = =mEzas k(z = ) 5

A
k

which reduces to

Therefore, if we use the static equilibrium position as the
zero reference for potential energy, we find that the total energy is

E=T+V=2mz24+lgis?
2 2
1. 2
—Ekzo
Also
T V... =E

max - ‘max
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In summary, it can be seen that the analysis is simplified by
measuring displacements from the position of static equilibrium and setting
the potential energy equal to zero at this point. In this case the total
force on the particle is

_a_V:. -kz
0z
giving
1 2
V=—2»kz

as found sbove. Note that this includes gravitational as well as elastic
potential energy. '

Example 3-3. A particle of mass m starts from rest and slides
on a frictionless track arocund a vertical circular loop of radius r. Find
the minimum starting height h above the bottom of the loop in order that -
the particle will not leave the track at any point.

Figure 3-10

In this exeample, the track is fixed and frictionless so it does
no work on the particle, Therefore, the only external force that works
on the particle is the force of gravity. So we can use the principle of
conservation of energy to find the speed of the particle at any point.
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Choose the zero reference for potential energy at the bottom of the
track. Clearly, the minimum speed during the loop occurs at the top
and is found from

giving
v2 = 2g(h - 2r)

NWow if the particle velocity is such that it just avoids leaving the
track at the top of the loop, then the force of track on the particle
is zero at this point but at no other point. ©So the gravitational
force is equal to the mass times the centripetal acceleration at this
point.

mg =m—
or

v2 = rg
Equating the two expressions for VE given above, we obtain

2
hmin - 2 r
Example 3-L4.. A particle of mass m slides along a friction-
less horizontal track in the form of a logarithmic spiral

If its initial speed is v, when @ = O, find its speed and also the

magnitude of the track force as a function of pesition,

L Figure 3-11
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In this case the only force acting on the particle is the track
force normal to the direction of motion. Therefore, from Equation (3-69)
the speed along the track is constant

From the equation of the curve we find that
N
rd

implying that the ratic of radial to tangential velocities remains constant,
and therefore, the angle is constant between the curve and a radial line
from point 0. Let this angle be ¢ where

tan o = 1
a
as shown in Figure 3-12.
6
- At
r 6 Nt
Figure 3-12

The track force will be calculated from the rate of change of
angular momentum about 0.

H=mr v gin @

H=mrvsing = -m ve sin @ cos Q

Il

From Equation (3-76) we see that the moment of the track force
about 0 must be constant, since H 1is constant, and is equal to

-F r cos ¢ = -m vE sin @ cos o



from which we obtain

5 mv§ B mvg
g R e
Ty V1 + a2

Example 3-5. A particle of mass m 1is projected horizontally
with velocity v, in the direction of the positive y-axis onto a horizontal
belt that is moving with a uniform velocity S in the direction of the
positive x-axis, as shown in Figure 3-13. There is a coefficient of slid-
ing friction 1 bhetween the particle and the belt. Assuming that the
particle first touches the belt at the origin of the fixed xy coordinate
system and remains on the belt, find the coordinates (x,y) of the point
where sliding stops. Y

LLLL LI LN LSS S

Belt

_h-vb

m

////////14///////////////
Figure 3-13

m

Before proceeding with the solution of the problem, consider first
the nature of the force of Coulomb or sliding friction. Suppose two bodies A
and B are sliding relative to each other and the force transmitted by the flat

contact surface has a component N normal to that surface (Figure 3-14). Then
the force of friction acting on A is

F. =-E3 ®

Fe T S “ (3-84)
where V  is the velocity of A relative to B at the contact surface.
of coursg, the frictional force on B 1is equal and opposite. It can be
seen that the force of friction is always in a direction opposite to ?}

W‘
v 1 a
plN
N B

Figure 3-14
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but is independent of its magnitude. Also, it is independent of the area
of contact. (In a more general sense, one can think of the force of slid-
ing friction as resulting from a frictional shear stress at the contact
area that is equal to p -times the normal pressure. This would give the
seme result in this case, but would aid in the analysis of more general
cases such as those with a curved contact area or nonuniform velocity or
pressure distributions.)

It should be noted in passing that the force required to initiate
sliding is somewhat larger than the force required to sustain it. The
equation for the magnitude of this force is

B, =jig ¥ (3-85)

where p, 1s the coefficient of static friction.

hg > W ¢ - Sl (3-86)

o
-

Returning to the problem at hand, first note that the fixed xy
coordinate system and also a reference frame moving with the belt are both.
inertial systems since the belt moves with uniform velocity. Because of
frictional force depends upon the motion of the particle relative to the
belt, it is more convenient to consider the motion relative to a coor-
dinate system x'y' that is fixed in the belt and moves with it. As
viewed by an observer riding with the belt, the particle moves onto the
belt with a velocity component v, in the positive ¥’ direction and a
component v, in the negative x' direction. The path of the particle
relative to the belt is a straight line since the frictional force directly
opposes the motion, and there are no horizontal forces perpendicular to
the path.

y'l
Vb

—
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Stopping d

point —”h\\\\\ |
v =0

Belt Vo
B N Lo A o
—_— 'Vb m

b

Figure 3-15
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Let us use the principle of work and kinetic energy to find
the stopping point in the x'y' frame. The work done against friction
is equal to the loss of kinetic energy, or

2 2
pmg d = % (vm + vy )

where d is the stopping distance, and the normal force is mg. Solv-
ing for the stopping distance

Assuming that the particle moved onto the belt at the origin of the
x'y' system, the stopping point is

d —2 ™
2 2 2
_ qvm + Ve He

vE + v§

%
|

Bz oug m* b
m

The time required to stop is just the original speed divided
by the constant deceleration ug, or

Now let us convert back to the fixed xy coordinate system
by means of the equations

b4

1
x! + vb t

yl’

¥

from which we obtain the coordinates in fixed space of the point where
sliding stops.

Vo [.2 2
_—_Eug vm-i-vb

Vm
— . T
¥y 5 J m b

¥
|
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This result could also have been obtained by working entirely
in the fixed xy frame. Again it is seen that the frictional force is
constant in magnitude and direction end sc is the resulting acceleration
pg which is in a direction opposite to the velocity of the particle re-
lative to the belt. Taking components of acceleration in the x and Yy
directions,

Yy
a_ = HUE )
xX
dvm + ib

Vm

ST

The time required for the y wvelocity to reach zero is just

2 2
Vi + Vp

L
Hg

S5

at which time the x component of wvelocity is

vy =8 t =V

which is Just the belt velocity, indicating that the sliding'stops in the
X and y directions simultaneocusly. The displacement at this time is
found from Equation (3-7) to be
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in agreement with our previous results. The path of the particle in fixed
space is parabolic while sliding occurs, as shown in Figure 3-16,

J
sliding stops b

L,____ a=0

parabolic path
\\\\\a=ug

t%n Figure 3-16




CHAPTER 4

DYNAMTICS OF A SYSTEM OF PARTICLES

L4-1, Equations of Motion

In Chapter 3, we obtained some of the important principles
and techniques to be used in the analysis of the motion of a single
particle. In this chapter, we shall study the motion of a system of
particles by extending the principles previously derived and by in-
troducing others.

Consider first a system of n particles, of which three are
shown in Figure L=1. A given particle may have both external and in-
ternal forces applied to it. The total force on the ith particle
arising from sources external to the.system of n particles is desig-
nated by Fi and is known as an external force. All interaction forces
among the particles are known as internal forces and are designated by
individual force vectors of the form T;;, where the first subscript
Aindicates the particle on which the force acts and the second subsecript
indicates the acting particle.

e I’I’l2
- _ 21 =
1S 1 Typ —4 =R
5 NG 23
' P 13 C.T;
31 I3
<Ry
0 m3F3 ¥y
x
Figure 4-1

We know from Newton's law of action and reaction that the
interaction forces between any two particles are equal and opposite,
L8y

By 5= Ty (4-1)

and also that they act along the same straight line connecting the particles.
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Now consider the forces acting on the ith particle. Including
both external and internsal forces, we can write the equation of motion.
n .

sy =Ty +E %, (1=1,2,...,n) (4-2)
=1
where
T3 =0

=

and where m; 1s the mass of the ith particle and Ei is its position
vector relative to a fixed point O. '

Summing Equation (4-2) over &ll particles and using Equation (L4-1),

we obtain
n .
Z miTi =Z Fy (4-3)
i=1 3= '
But ‘the total mass is
n .
. =z n (h-k)
3=,

i 5
To-1) mm | (4-5)
i=1

So Equation (4-3) can be written in the form

c

¥ sz (4-6)

where

e
F=) § (k-7)
i=1

In other words, the motion of the center of mass of a system of
particles is the same as if the entire mass of the system were concentra-
ted at the center of mass and were driven by the resultant of all forces
external to the systenm.
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L-2, Work and Kinetic Energy

Because of the similarity in form between Equation (4-6) and the
equation of motion for a single particle, T = mF, it is apparent that a
set of principles similar to those for a single particle also applies to
the motion of the center of mass of a system of particles.

Let us assume that the center of mass of the system moves from
A to B, under the action of the forces acting on the system. Then, taking
the line integral of each side of Equation (4-6) in a manner similar to
that shown in Figure 3-1, we obtain a result similar to Equation (3-35).

Be B,
(4-8)

Ac

This equation states that if one considers the resultant of the external
forces to be acting at the center of mass of the system, then the work
done by the external forces in moving over the path of the center of mass
is equal to the change in the translational kinetic energy of the total
mass as it moves along that path.

The work expressed by the integral on the left side of Equa-
tion (4-8) does not include that work done by the internal forces, nor
is it even the total work of the external forces. To see this more clearly,
let us calculate the total work. The total work done by all the forces
acting on the 1ith particle as it moves from Ai to Bi is

ik n
i J=

But we can write the position vector of the ith particle as the sum
where p, is the position vector of the ith particle relative to the

center 0} mass, as shown in Figure 4-1, So, summing over all particles,
using Bquations (4-9) and (4-10), we obtain the total work

Z y ‘Z f (Fy Z fijs'(a;c + dpy)

i=l Az
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*‘S |

Zf F, {

J=1

ii J[\ 4-§i ?ij)-dﬁi (L-11)

J=L

where the limits on the second integral refer to the position of the ith
particle relative to the position of the center of mass of the system.

From Equation (L4-1) we see that

ji ii Egj =0 (4-12)

i=l j=1

Using this equation and alsc Equation (4-7) we can simplify Equation (4-11)
for the total work.

Be iL. B4 '
W =f Fadr, + ) f (F, + L Fy4)-dp; (4-13)
A, i=l A4

Thus the total work is the work done by the total external force acting
through the displacement of the center of mass plus the work done by the
external and internal forces on each particle acting through the displace-
ment of the particle relative to the center of mass.

Now, for each particle, the equation of work and kinetic energy
applies, so

B

age ok kr = oyl = & 2 & & i
Wi - [ri ri] ) [rc 2, + 2rC p; + Py p.WA (L4-14)

L Iy L

where we have substituted for ?i according to Equation (4-10). Summing
Equation (4-1k4) over all particles and noting that

I
) mpi -0 (4-15)
i=1

because ﬁi is measured from the center of mass, we obtain

c n
m_2 '
W=§vc ‘i“Z

i=1

By

(4-16)

A
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where vy is the speed of the ith particle as viewed by an observer
translating with the center of mass. The right side of the above equa-
tion represents the change in the total kinetic energy.

W=y - T, (4-17)

where T, and Ty are the total kinetic energy of the system at the begin-
ning and end of the line integrations, respectively.
n

2 my p .
v, +Z =1 (4-18)

i=l

T =

(oY }=

It can be seen that, if finite external and internal forces
act upon the system, then as the time interval being considered spproaches
zero, the changes in kinetic energy and the work also approach zero but
remain equal in accordance with Equation (4-16). In the limit we can write.

W=T © (4-19)

i.e., the total rate at which both external and internal forces do work
on a system of particles is equal to its rate of increase of kinetic energy.

Returning now to Equations (4-8), (4-13), and (4-16), we find
that

(4-20)

implying that the change in total kinetic energy due to particle velocities
relative to the center of mass is equal to the work done by the external
and internal forces as each particle moves through its displacement re-
lative to the center of mass.

We can summarize the results of this section as follows:

1. The total kinetic energy is equal to that due to the total
mass moving with the velocity of the center of mass plus
that due to the motions of the individusl particles rela-
tive to the center of mass.

2. The work done by the external forces in moving through the
displacement of the center of mass is equal to the cheange
in kinetic energy of the total mass moving with the speed
of the center of mass.
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3. The work done by the external plus internal forces acting
through the relative displacements is equal to the change
in the kinetic énergy due to motion of the particles re-
lative to the mass center. This kinetic energy is a re-
sult of the relative motion due to changing particle dis-

“tances as well as that due to rigid body rotation in which
the particle separations do not change with time.

4-3. Conservation of Mechanical Energy

The principle of conservation of mechanical energy was developed
for the case of a single particle in Section 3-3. This principle can be
extended to systems of particles in a direct manner.

First recall from Equation (4-6) that the motion of the center
of mass of the system is the same as though the total external, force were
acting on the total mass concentrated at the mass center. Therefore, if
the external forces are conservative, i.e., if they are derivable from a
potential function involving coordinates only, then the center of mass
moves such that

T+ V, =k (4-21)

is a constant, where

Tc = kinetic energy due to translational motion of the center
of mass
V_ = potential energy associated with the external forces

acting on the system.

Equation (4-21) is valid even though the internal forces may
be dissipative since, as we have seen, E, 1is not the total energy but
Just a portion of it.

For the case where the internal as well as externsl forces are
conservative we can write

T+V=E (4-22)

where, in this case, the total energy is conserved. The total kinetic
energy T is simply the sum of the kinetic energies of the individual
particles. The total potential energy V is normally the sum of the
potential energy due to gravity and that due to deformation of elastic
elements in the system such as springs. In any event the potential energy
is of the form

Vo= V(x), Xp, X35 ceeee Xgp) (4-23)
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for the case of n particles moving in three-dimensional space. Then, if
a small increase in X results in the small displacement of a certain
particle in a given direction, the force

o OX (4-2L)

acts on the given particle in the direction of increasing x .

The results of Equations (4-23) and (4-24) apply to the potential
energy Vc, as well, except that the forces obtained are external forces
only. A particularly simple case results when the system moves in a uniform
gravitational field, in which case the potential energy is a function of
Jjust the center of mass position, and is not dependent upon the specific
locations of the individual particles. Then the center of mass moves as
though it were a single particle being *acted upon by the gravitational field.

4-L, Impulse and Momentum
In a manner similar to that used in obtaining the equation of

impulse and momentum for a single particle, Equation (L4-6) can be integrated
with respect to time to give

to
f F dt =m(vf32 - Va1 | (4-25)
t
where Voo and v are the velocities of the center of mass at times ¢

and tq, respectivgly. The integral on the left is the total impulse of
the external forces during the given interval and the right side represents
the change in total linear momentum of the system in the same interval.
Note that because of Equation (4-1), the total impulse of the internal
forces is zero, and they have no influence on the total linear momentum

of the system.

Equation (4-25) could have been written in terms of Ceartesian
components as follows:
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to
Fy = By at =T, - Yoy (4-26)
1
tp
E}Z =Lzﬁ F, dt = m(zC2 - icl)
1

where EZ;’égy’ and :}; are the components of the total impulse .~ due to
external forces.

It can be seen that if any component of the total impulse is zero,
then the momentum is conserved in this direction. Furthermore, 1f there
are no external forces acting on the system, regardless of the nature of
the internal forces, then the total momentum is constant. This is principle
of conservation of linear momentum as it applies to a system of particles.
It is particularly useful in the analysis of problems in which the internal
forces are unknown such as in collision and explosion problems.

4-5. Angular Momentum

In Section 3-6, equations were developed for the angular momentum
of a single particle and also its time rate of change, using as a reference
a point fixed in inertial space. In this section we will extend this develop-
ment to cover a system of particles, and in doing so we will consider several
possible reference points. :

Fixed reference point. Let us consider the total angular momen-
tum of a system of n particles (Figure 4-1), taking as a reference the
fixed point 0. Using Equation (3-72) we see that the angular momentum
of the ith particle is '

ii =Tj X my Iy (4-27)

The total angular momentum of the system is merely the vector sum of the
angular momenta of the individual particles.

n T <
i=l i=1
Also, 5
E = Z ;i X IIli —I—"i (LI"29)
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Using Equation (L4-2) the right side of Equation (4-29) can be changed

to the form
n n
il - = N - —
H:Z r; x Fy +ZZ rixfij (4-30)

Z Z ry x £33 =0 (4-31)
i= J=

since the internal forces occur in equal, opposite and collinear pairs.
In other words, for every internal force fi s there is another force

But

?ji whose moment sbout point 0O exactly cancels that due to ?ij'
Therefore, '
H=M (L=32)
where
n
i=1

is the total moment about O of the external forces acting on the system.

Reference point at the center of mass. We can also write the
angular momentum about O in terms of the position vector relative to
the center of mass. From Equations (4-10) and (4-28) we obtain

Z +5) xmy (@ +5;) (4-34)

We have seen from Equation (4-15) that

[ReE

m, B = 0

m
F_I

and

el o
=
A
B
1
O

|,|_l.
I
=]
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so Equation (4-34) reduces to
n

H = ;e Xxm ;c +£E; Ei X myg Ei (4-35)

where m is the total mass. The first term of Equation (4-35) cen be
interpreted as the angular momentum due to all the particles moving at
the velocity of the center of mass, or as the moment of momentum of a
particle of mass m located at the center of mass and moving with it.

The second term of Equation (4-35) is the angular momentum of
the system with respect to the center of mass, as viewed by a nonrotating
observer moving with the center of mass. Let us call this term Hc‘

n
ﬁc =z Ei X miEi _ ) (L4=36)
i=1

So we can summarize by observing that the total angular momentum
sbout a fixed point O is the sum of (1) the angular momentum sbout O due to
translational motion with the velocity of the center of mass and (2) the
angular momentum of the system relative to the center of mass.

Now let us differentiate Equation (L4-35), obtaining

n
= ;c X m é; 4-24 pi X my ﬁi (4-37)
I=1
We have seen in Equation (u-é)/_f{hat
| Fome
Also, from Equation (L-36):;E iind that
Bo=) Buixmipy (4-38)

Therefore, we can write Equation (4-37) in the form

E=F xF+ ffc ' (4-39)

But from Equetions (4-7), (4-10), (4-32), and (4-33) we see that



=81 =

or
n

§=T;_XF+Z'E_ x B (4-k0)
1=1

Finally, from Equations (4-39) and (4-40) we obtain

ﬁc = M, (4-21)
where
n
H, =Z e x¥® . (4-k2)
i=1 ' )

is the moment of the external forces about the center of mass.

Comparing Equations (4=32) and (4-41) we see that they are of
identical form. So we can state that the time rate of change of angular
momentum of & system of particles relative to & given point is equal to
the moment about that point of the external forces acting on the system,
providing that the chosen point is either (1) fixed in inertisl space or
(2) the center of mass of the system,

A further conclusion is that if the moment of the external forces
about either of the above reference points is zero, then the corresponding
angular momentum is constant. This is the principle of conservation of angular
momentum as it applies to a system of particles.

Arbitrary reference point. Now let us consider the angular momen-
tum of a system of particles relative to an arbitrary point P, i.e., as viewed
by a nonrotating observer that is moving with point P.

Let the xyz freme of Figure 4-2 be fixed in inertial space, and
let the point P move in an arbitrary menner relstive to this frame., The
position wvectors drawn from the fixed point O to the center of mass, the
point P, and a typical particle m; are designated by T,, T, and T;,
respectively. The position vectors of the center of mess and the particle

relative to the point P are EE and p;, respectively. It can be seen that

;i = ;b + Ei (4-43)
;c = ;§ + Ec (L=lk)
Also
’ n
- 1 -
Pe = EZ m; Py (4=45)
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Figure L-2

which is the defining equation for the location of the center of mass.

From Equations (L4-28) and (L4-43) we can write an expression
for the angular momentum about 0,

n n
oow Z x my Ty _Z (Fp + p1) x my (vp + p1)  (L-46)
i=l i=1 ’

which can be simplified ueing Equations (4-44) and (L4-45) to give

B=H +T,xmT,+7xmp, (h=k7)
where 'I-TP is the angular momentum of the system relative to P.
s
Z x my py (4-48)

Now let us differentiste Equation (L-L47) with respect to time
end use Equation (4-4L4) to obtain

HI-.I+r+ mr <+ (r =+ Xm?r +r xmp +r xn
p(Pp)xP(Pp)prpP

p
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which reduces to

(4=49)

S8

+T_ XM
P P c

i)«
K|

H = D +p,xXm
The moment about O of the external forces is found in the same manner as

in Equation (4-40).

n
M= T, X F+ py x F, (h—jO)
i=1l
or
M= xF +M b
p * P . (4-51)
where i&} is-the moment about P of the external forces.
n
Ep =Z Py X Fj_ (4.52)
i=l

Finally, from Equations (4-6), (4-32), (4-49), amd (4-51), we obtain

ﬁp = Hp -p xmr (4-53)

A comparison of Equation (4-53) with Equations (4-32) and (4-kl)
reveals that the choice of an arbitrary reference point has resulfed in an
additional term, =-p. X m T . Of course, if P is fixed, then ?b =0
and the term is zero, If is at the center of mass, then p, =0 and
ggain the term is zero, in agreement with our earlier results. If p, and
T _ are parallel, the term also disappears, but this situation is not very

lgkely to occur over an extended interval of time.

The physical interpretation of this term is that it is the moment
gbout P of the inertial or D'Alembert force, -mr_, due to the fact that
that the nonrotating reference freme moving with P is not an inertisl
frame, This resultant inertial force is the sum of the individual inertial
forces at the particles and it acts on a line through the center of mass,
Thus, one could use the gtandard form of the equation, H =M, even for
the case of an gccelerating reference point if he were to include inertial
forces (due to ?5) as well as the actual external forces in calculating M,

The above interpretation is an application of the following general
rule:
All results and principles derivable from Newton's
laws of motion relative to an inertisl frame can be extended
to apply to an accelerating but nonrotating frame if the
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inertial forces due to the acceleration of the frame are con-
sidered as additional external forces acting on the system.

This rule applies to all calculations including those of work,
kinetic energy, momentum, angular momentum, etc. It is seen that the
original introduction of inertial forces in Equation (1-34) is the special
case where the reference frame translates with the particle. Thus there
is no motion relative to this reference frame and the situstion reduces to
that of static equilibrium with the true externalforces being balanced by
inertial forces. - : :

A word of caution should be given at this point. On the whole,
it is advisable to consider dynamics problems from the viewpoint of an
observer in an inertial frame of reference and, therefore, to include only
the true external forces acting on a particle or set of particles when
applying Newton's equation of motion. On the other hand, certain problems,
or portions of an analysis, are made simpler by adopting the viewpoint of
an accelerating observer. A common exsmple of the latter is the choice of
the center of mass (which may be accelerating) as the reference point for
the analysis of the rotational aspects of the motion, as in Equation (4-41),

Equation (4-53), utilizing an arbitrary reference point P, also
is very convenient for certain problems., One example is the case where the
motion of a given point in the system is & known function of time. Choosing
this point as the reference point P, one can immediately calculate the in-
ertial force -mr_., Furthermore, the external force acting et P has no
moment about P and thus need not be calculated, whereas it would have to
be calculated if another reference point were chosen. '

Another example is the writing of the rotestional equations for a
satellite or space vehicle with moving parts. It is convenient to choose a
reference point that is fixed in one (normslly the largest) part of the
system and to specify the location of the warious parts relative to this
reference, as they would naturally appear to an observer on the vehicle,
This is in contrast to having to recompute the locations and moments of
inertia of all parts relastive to the center of mass as the center of mass
moves, and this may occur due to the reletive motion of a single part.

L-6. Angular Impulse

The equation relating the angular impulse due to external forces
and the change of angular momentum cen be derived for the case of a systen
of particles in & manner similar to that used in obtaining Equation (3-83)
for a single particle.

We have seen from Equations (4-32) and (4-41) that

H=MNM
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applies to a system of particles when the reference point is elther fixed
or is at the center of mass, Integration of both eides of this eguation
with respect to time over the intervel from ¢, to tp results in

“f?i= EE - B (L4-54)

where to
.= f M at (4-55)

5

is the total impulse acting on the system due to external forces., As we

have seen, the internal forces between any two particles occur in equal,

opposite, and collinear pairs, and therefore they cancel out in this cal-
culation. :

If we perform a similar integration on Equation (4-53) we obtain

to

Hpp - le =7np -k/ﬁ o, ¥ I T, at (4-56)
Ll

where the integral on the right can be interpreted as the angular impulse
about P of the inertial forces arising from the acceleration of P,

4,7 Collisions

In order to clarify some of the important features of collision
problems, let us first consider the special case of two colliding spheres.
The spheres will be assumed to be perfectly smooth, implying that all forces
on a sphere pass through the center of mass, thereby reducing the problem
to one of particle motion. Furthermore, let us assume that the spheres move
in the same plane before impact, i.e., the velocity vectors and the line of
centers at impact a&ll lie in the same plane,

Before After
Figure 4-3
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The situation is shown in Figure L4-3 where u, represents a velocity
component along the line of centers and uy represents a velocity com-
ponent perpendicular to the line of centers and in the plane of motion.
The velocities are relative to an inertisl frame.

An important assumption in the solution of collision problems
is that the forces between the colliding bodies st the moment of impact
are impulsive in nature, that is, the forces are very large compared to
any other forces acting at the same time and are of very short duration.
Thus they are best defined in terms of their total impulse rather than
making any attempt to give their variation with time. Let us designate
this impulse by fﬁz in the present case. It acts to the left on m; and
to the right on ms, 1in each case being normal to the common tangent
plane at the point of contact. Using the equation of linear impulse and
momentum on each particle we can writq

m, (ugy - ') = F - my (Wo - upo)

or
mpougy Wy U, =myoul, bmyul, (-57)

There is no impulse on the spheres in the tangential direction
s0 the velocity components in this direction are unchanged.

Y1 T Y61
Ups = Uhs (4-38)
from which we obtain
My Upy +Hp Uy =My Ugy +m, ul, i (k59)

Equations (4-57) and (4-59) indicate that the components of linear
momentum in the normel and tangential directions are conserved during im-
pact, and thus the total linear momentum of the system is conserved. This
is to be expected since no external forces are acting on the system.

But even if other forces do act on the system, Equations (4-57),
(4-58), and (4-59) still apply, providing that these other forces are not
impulsive forces applied at the instant of impact. The reason is that any
non-impulsive forces applied over the infinitesimal time interval will have
a negligible total impulse and thus a negligible effect in this interval.
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In order to solve for the motion of the system, we must know the
tangential and normal components of velocity after impact. The tangential
components are given by Equation (4-58). However, another equation is re-
quired in addition to Equation (4-57) in order to be able to solve for both
u’n and u'n . This equation relates the normal components of the veloc-
ities of gpproach and separation.

Ujp = U'pyp = e(unl = ung) (0<ex1) (4-60)

where e is the 'coefficient of restitution. From Equations (4-57) and
(4-60) we obtain

m - e m (1+ e)mp
uﬁl= e B + —————————-un2

LY

' - Lh-61)
(1 + ezm Mo - € m (
ul, = 1 u . + i Ml u,

2 m+m, Bl omo+m, 02

When e = 0, the normal velocities after impact are equal (uﬁl=u52)
and the collision is said to be inelastic. In this case, the systenm
always loses kinetic energy during impact.

When e = 1, the relative velocities of approach and separation
heve the same magnitude and the collision is said to be perfectly elastic.
In this case the total kinetic energy is conserved as well as the momentum.
To see this most easily, let us view the collision from an inertial frame
moving with the velocity of one of the spheres(m;, for example) just before

impact. Then R 0, and we find, using Equation (4-61) that
1 12 1 2 _ 1 2
- M7 U + = = . O
e e Ta Ve = 5 2 'mn2 (4-62)

Combining Equations (4-58) and (4-62), we obtain

3) =Lmp(unp +upy)  (4-63)

B 2 1 2 1
3 m uy + 5 mp(uls + ug
implying that the total kinetic energy is conserved. Since energy conserva-
tion does not depend upon which inertial frame is chosen as a reference,
the kinetic energy is conserved in the original, fixed frame as well,

For the particular case of the perfectly elastic impact of smooth
spheres of equal mass, the normal components of velocity of the spheres are
interchanged, as can be seen from Equation (4-61)
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na
(L-6k)

unE = unl

In general,we conclude that linear momentum is always conserved
at the moment of impact, as indicated by Equations (4-57) and (4-59). On
the other hand, mechanical energy is conserved only for the case of per-
fectly elastic impact (e = 1). The lost kinetic energy for e # 1 appears
as heat or, in essence, as the kinetic energy of internal vibrations whose
scale is relatively microscopic and therefore is not included in our anal-
ysis.

An interesting way of obtaining a better understanding of the
physical nature of the coefficient of restitution is by considering the
collision process to occur in two phases: (1) the compression phase during
which the relative normal velocity of the spheres is reduced to zero, and
(2) the restitution phase which lasts from the end of (1) until the spheres
separate. Now a portion of the total collision impulse :ﬁj will occur dur-
ing the compression phase and the remainder occurs during the restitution
phase. Calling these impulses j;; and 3;;, respectively, we have

§-= ? * ? (4-65)

All impulses on a given sphere occur in the same direction, so we need to
consider only their magnitudes. Furthermore, since the change in velocity
of a given mass is directly proportional to the applied impulse, we con-
clude from Equation (4-60) that

F o= o F (4-66)

r

We assumed originally that both spheres move in the same plane
before impact and the results of the analysis indicate that no forces are
produced during the collision to cause the motion to deviate from that
plane, Upon further study, however, it becomes apparent that this assump-
tion was not really necessary and that the above results are wvalid for the
more general case. This is because we are interested only in the forces
and changes of velocity at the moment of impact. We have seen that all
forces except the impulse jE' can be neglected at this moment. Further-
more the collision can be observed from a reference frame translating at
the velocity one of the spheres Jjust before impact. From this viewpoint
it can be seen that the important forces and velocities lie in the plane
containing the line of centers at impact and the relative velocity vector.
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4-8. The Rocket Problem

Particle mechanics approach. An important application of the
principles of dynamics of a system of particles is in the analysis of
rocket propulsion, i.e., propulsion by meens of reaction forces due to
the ejection of mass. As & simplified example, consider the rocket shown
in Figure U4-4. Assume that the rocket is operating in a vacuum in the
absence of gravitational forces. Let the

bt
P_A v P, R TAY
(V—Véi%éﬂ)
= t = t""
t tl { t
Figure L-4

area of the nozzle exit be Ae and let the average pressure of the ex-
haust gases at this area be. P,. The average exit velocity of the ex-
hause gases relative to the rocket is Ve Assume also that the mass of
the unburned fuel plus the rocket strucQure and paquad is given by

m =m, - bt (4-67)
where b 1is the rate at which fuel is burned and ejected from the rocket.

The parameter b is normally assumed to be constant during burning, but,
in general, ;

b = pe Ag Ve (4-68)

where Pe is the average density of the discharged gases at the exit
area Ae.

Let us take as ﬁhe system of particles under consideration the

total mass my of the rocket at time tl' We will consider the same
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system again after an infinitesimal interval At and use the equation of
impulse and momentum to calculate the change in rocket velocity. The total
impulse acting on the system during this interval is

O~

F = pe e Ot (4-69)

since the force due to the pressure Pe is the only external force on
the system. The total momentum at t = t; + At is '

(ml - bAt) (v + Av) + bat(v + %&v - ve)

where the first term is the momentum of the rocket and unburned fuel and the
second term 1is the momentum of the mass bAt ejected with velocity Ve 1in

a rearward direction relative to the average rocket velocity (v + = Av)
during the interval. The total momentym at & = tl is simply myv. There-
fore, equating the total impulse omn the system to the change in linear momen-
tum, we obtain

1
PeAlt = (my - bAt) (v + &v) + bab(v + Zdy = w) ~m ¥
which simplifies to
AML =mAv - b v_Ab - 3 bAvAt (b
BA = mav - vy - 5 baw _ -70)

Diving by At and taking the limit as At approaches zero we find that
mv = DAt D v, (4-71)

The last term of Equation (4-70) can be neglected as At approaches zero
since Av also approaches zero.

Equation (L4-T71l) can also be written in the form
F =mv (4-72)
where FS is the static thrust of the rocket
Fg = DAt b v, (4-73)
To see this more clearly, suppose the rocket of Figure L4-L4 is
held fixed by a test stand, as shown in Figure 4-5. The static thrust Fs

is the force that is transmitted by the test stand to the earth and is &lso
the force on the rocket that is required to keep it ststionary. In this
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case, the total external force on the system is (Fy - pgA.) in a rearward
direction. The rocket itself has no momentum; the only momentum is that
of the exhaust gases. So using impulse and momentum considerations,

(F

s = DAL =D v AL

or

FS = peﬁe+ b Ve

in agreement with Equation (4-73). Note that.we have again been careful

to include the same particles in the system at the beginning and end of
the interval At.

Now let us consider the forces acting on the unburned mass m
when the test stand has been removed. In this case, the total force is
the sum of the pressure force PgA, and the jet reaction force b ve. In
other words, it is just the static thrust F_. From Equation (4-71), we
see that this is equal to the mass times the absolute acceleration.

Figure 4-6
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The conclusion to be emphasized at this point is that Newton's
equation of motion

F=ma

applies instantanéously to a group of particles translating together,
even though the total mass of the group may be changing due to a loss
or gain of particles. Note that the term m ¥ does not appear in this
equation, implying that the equation

- 4 -
F=c(mv
—(m v)
does not apply to a system whose mass is changing, but rather it applies
just to the case of systems with constant total mass (or when considering
relativistic effects).

Note also that the acceleration of a changing system of particles
is the acceleration of the center of mass of the system, assuming that the
total mass is fixed for that instant. For example, in the case of solid-
fuel rockets, it does not include the effect of center of mass motion re-
lative to the rocket structure as the fuel is burned.

Control volume approach. Another approach to the derivation of
the rocket acceleration equation is provided by a more general analysis of
the material within a given control volume, as shown in Figure 4-7. This
control volume may move or change its shape, and, in general, there is a

Control Volume

Figure 4-7
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mass flow through its surface. The problem is to find the rate of change
of linear momentum of & specific mass of fluid and solid material, i.e.,
of a certain set of particles, due to the resultant external force F
gcting on it.

Iet us take as the system the material within the control volume
at a given time tl and compare its momentum with the momentum of the
same set of particles at time t; + At. The total linear momentum at time

tl is Just

p ¥ av w
v

t

where p 1is the mass density and v 1is the absolute velocity of the
volume element dV, The integral is taken over the entire control volume
V.

Now if we evaluate the same integral at time ¢, + At, we find
that a slightly different set of particles is within the control wvolume.
So, in order to follow the same set of particles, we must add to the momen.-
tum of the particles within the control volume at tl + At the momentum
of the "native" particles that left it in the interval At, and subtract
the momertum of the "foreign" particles that entered it in the same inter-
val. Therefore at time <t + At, the momentum of the original set of
particles is

f p$dv‘ +£§.tf p ¥ (V. &)
¥

6y ¢ & A

where the second integral accounts for the momentum of the particles enter-
ing or leaving the control volume in the interval At. This integral is
over the entire surface of the control volume, - dA being a surface ele-
ment, the orientation being specified by the outward pointing normal vector.
The vector ?& is the velocity, relative to the surface, of the particles
that are entering or leaving. Thus p(?}- dA) At represents a mass ele-
ment crossing the surface in the interval At, with a positive ¥ - aA
referring to a leaving native element, and a negative ?r- dA referring
to an entering foreign element, Multiplying each mass element crossing
the boundary surface by its absolute velocity ¥ and integrating over all
all elements we obtain a correction term which can be interpreted as the
net momentum outflow from the control volume during the interval AtL.

Changes in ¥ or ?} during this interval can be neglected.
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Thus, the change in linear momentum of the original system of
particles in the interval At is given by

"

fp?de| ‘f p v av +&tfp?(§r-31)
v v

ty + O 1

Dividing the above expression by At and taking the limit as At approaches
zero we obtain the rate of change of the total linesr momentum of the system,
and this, by Newton's equation, must be equal to the total external force on
the system. Thus,

§=§E[Lp;dv_ ]} Apv(-vr-az) (4-T74)

Now let us apply Equation (4-74) to rocket previously considered
in Figure 4-4. Take a control volume which includes the rocket and moves
with it, as shown in Figure L4-8. The exit area of the rocket is a portion
of the surface of the control volume. :

I e A AR |
I |
I |
| I
: [
I
_ |
—— v |
Vr=ve —— PeAe m ) e |
R i
|
: I
|
: |
| |
|
A

Figure L4-8

The total externsl force is due to the exit pressure p acting
e
on the flat exit ares AE.

F - p A d (4-75)



where the force acts to the right in the direction of the rocket velocity
V. Evaluating the magnitudes of the other terms of Equation (4-T74), assum-
ing positive to the right, we obtain

=mv (4-76)

resulting in

gg [L/ﬂ oV dV] l =mv+mvy=mvV-bv (4-77)
v

where m 1is evaluated from Equation (4-67). The jet exhaust furnishes

the only particles crossing the surface of the control volume, their re-
lative wvelocity being i & to the left, corresponding to an absolute velocity
v - v, to the right. Therefore, using Equation (4-68), we find that

f PV (?r- dx) ‘ = Pe (v - vg) vg Ag =D (v - ve). (4-T78)
A

Finally, from Equations (4=74), (4=75), (4-77), and (4-78) we
obtain

DA=m vV -bv+b (v-v)
or
mv = PelAe + b Vg
in agreement with Equation (4-71).

It can be seen that both this derivation and the previous one
have neglected changes with time of the momentum of the jet as it flows
within the control volume.

Of course, in practical cases, other external forces may act
on the rocket such as aerodynamic and gravitational forces. Note that
BEquation (4-73) for the static thrust applies also for the case where
the test is not made in a vacuum, providing that p. 1is interpreted
as the average gauge pressure at the exit.

Integration of the rocket equation. Let us return now to the
differential equation for rocket flight in a vacuum with no gravitational
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forces, as given in Equations (4-71) and (4-72).
m vV = DAt b Vg = Fy

where the thrust force F_ 1is assumed to be constant. We can write,
using Equation (4-67),

mdV —pdvdm_ v
dt dm 4t dm
giving
. -
v . _ s (4-79)
dm bm

Integrating between initial and final (normally burnout) conditions, de-
signated by the subscripts i and £, respectively, we obtain

L FopT
S
f av = - F[ o (4-80)
£ ¢ 1
or
Fg . my
¥p Wy, WS 1n ;1: (4-81)

It can be seen in this case of no gravitational or aerodynamic
forces that the velocity gain ve - vy is independent of the burning time
for a given mass ratio mi/mf- so long as F /b is constent. The coef-
ficient Fg/b has the units of impulse per unit mass. Normally it is
specified in terms of the specific impulse

t =28 (4-82)
sp bg

which is the total impulse per pound of propellant, the weight being
measured at the earth's surface. So the velocity change written in terms
of the specific impulse of the propellant is

|

Vo =V = Isp g 1n E; d (4+-83)

For the case where the rocket is fired vertically upward in a
constant grevitational field, the effect of the gravitational force - mg
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can be superimposed upon the solution as given by Equation (4-83). This
follows from the fact that Equation (4-71) is a linear differential equa-
tion and the superimposed gravitational force is not a function of posi-

tion or velocity. Assuming a burning time Tb, the burnout velocity is

m
Ve =V ~8Tp +Igp 8 1ln ai (L4-8L4)

k-9, Examples

Example L-1. Mass m,, moving in the x direction with velocity
v, hits my, and sticks to it (Figure 4-9). If all three particles are
of equal mass m and if m, and m, are connected by a rigid, massless
rod as shown, find the motion of the particles after impact. All particles
can move without friction on the horizontal xy plane.

»

rigid, massless rod

X

Figure L4-9

First we notice that the linear momentum of the system of
three particles is conserved since no external forces act on the system.
Let us take components of momentum along the rod. Since the rod is rigid,
the velocity component along the rod after impact will be the same for all
three masses. Calling this velocity ué we can write the eguation of
momentum conservation in this direction, obtaining

=3mu'

L0
a
2

or
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Similarly we can write the equation of momentum conservation in
a direction perpendicular to the rod

v
m-—-—=2mnu'
V2
or
' = o v
P 22

where ué is tHe component of the wvelocity of my and my perpendicular
to the rod immediately after impact. The velocity of m, Just after im-
pact is entirely in a direction along the rod since it receives an impulse
in this direction through the rod. The above result can also be obtained
by conserving angular momentum about a point fixed in the xy plane at the
initial position of m3.
The velocities of (ml + my ) and m immediately after impact
are as shown in Figure 4-10. Throughout the whole problem, i.e., before,
during, and after impact, the center of mass of the system moves with a
constant velocity v/3 in the positive x direction along a line

J
s

path of c.m,

-
CE
\v

2

Figure L4-10

V= 1/3 Ji. After impact the system rotates at a constant rate w found
by dividing the perpendicular velocity component of (ml + mz) relative to
m3 by the rod length l
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The angular velocity w 1is constant after impact because no moments act
on the system and, therefore, the angular momentum about the center of
mass is conserved,

Examplg 4-2, Mass my hits m, with inelastic impact (e = 0)
while moving with velocity v along the common line of centers of the
three equal masses. Initially, masses b and m3 are stationary and
the spring is unstressed. TFind:

a. The velocities of my, mp, and m3 immediately after
impact.
b. The maximum kinetic energy of m3.

c. The minimum kinetic energy of m,, .

d. The maximum compression of the spring.

e, The final motion of m .

v k

1 i = — sy — ng

TR TTFTTF T 7777 T T 7T AT 7 7 7777 T

frictionless

Figure L-11

The problem is one-dimensional in nature and no external forces
act on the system in this direction. Therefore, linear momertum is con-
served throughout the problem. BRBecause e = 0, masses my and m, will
move at the same velocity immediately after impact. Calling this velocity
ué we can use the principle of conservation of linear momentum to obtain

or
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where m 1is the mass of each particle. Mass m, does not move at the
time of impact because the spring is initially unstressed and (ml + m2)
must move through a displacement before any force acts on m,. So the

situation immediately after impact is as shown in Figure L-12,

For all time after the impact the total energy is conserved, and
it is equal to the kinetic energy just after impact. Designating the dis-
placements of (m; + m,) and my by x, end x,, respectively we can write

3

+% k(x, - x )2 L v

ik
mv2+§mv 5 3

2
2 3
where v, and v, are the velocities of (m + my) and m3, respectively.
From the conserva%ion of linear momentum we obtain

2 m Vo + o vy =m v

from which we can solve for vV, 1in terms of v and V3, assuming, of
course, that my and m, continue to move together.

g S
Vo =5 (v v3)
Because of total energy conservation, the total kinetic energy will be
maximum when the potential energy stored in the spring is zero, i.e., when
Xp = X3. S0, setting xo = X3 and substituting for vo in the energy
equation given above, we obtain

2

= [y s v3) o+ % v

I
or

from which we find the roots

Now the extreme values of kinetic energy for the particles (ml+m2)
and m,, taken separately, will occur when the individual velocities reach
extreme values, i.e., when the accelerations and the spring force are zero
and Xp = X3. Therefore, the extreme values of kinetic energy of the in-
dividual particles occur when the total kinetic energy is maximum, that is,
when VS =0 or 3 v. The maximum kinetic energy of mg is thus

2
2 9

1 )

up = v/2 iy = 0 3'max
e 3 3
k

am Loy ™

FALS S 7S A7 7777777

Figure 4-12
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Because of linear momentum conservation, the minimum velocity of m_ to
the right occurs at the same time and is equal to

1 2 " -
'\re-gmmv-§mv —EV

Thus

V)E 1 .2

(2 = % m (g

2)min

The maximum compression of the spring occurs when the relative
velocity of its two ends is zero, in which case all three particles are
moving with the same velocity. By coqﬁervation of linear momentum

1
Vl=V2=V3 ==V

3

Substituting these values into the general energ& equation we obtain the
maximum spring compression

(xe - x3) ={%% v

max

where the other sign of the square root is omitted because it implies spring
tension, in which case the particles my and my have separated. lAs a
matter of fact, as mass my, accelerates from its minimum velocity v, it
leaves m, which continues to move at the uniform velocity 1y, Meanwhile,
the center of mass of My aid m, translates uniformly at 2_ v in ac-
cordance with the conservation of total linear momentum, while mE and m

3
oscillate relative to it at an angular frequency w =\f§E

Before leaving this example we should notice that it could have
been solved by considering the whole process from the viewpoint of an
observer translating uniformly with the center of mass of the system. In
this case the situation immediately after impact appears as shown in Fig-
ure 4-13, The center of mass appears fixed in this system and the given

V/6 = k V/3
—r e —
3k 3/2 k
2m Lol m

Figure 4-13
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spring can be divided into two springs with stiffnesses that are inversely
proportional to their lengths, as shown, Each mass executes simple harmonic
motion at an angular frequency w = [3X. This motion continues only for a
half-cycle at which time my and mé separate and the motion continues

in the manner explained previously.

Example L4-3. A two-stage sounding rocket is to be shot vertically
from the earth. Each stage individually has a mass ratio (initial mass to
final mass) equal to 9, the total weight of the first stage being 360 1lbs,
and that of the second stage being 90 lbs. Assuming that a payload weight
of 30 pounds is mounted atop the second stage and that a 20-second coasting
period occurs between first stage burnout and the ignition of the second
stage, find the maximum altitude reached by the second stage plus payload.
The burning time is assumed to be short and the gravity change is neglected
during the coasting phase before second stage ignition. The specific im-
pulse of the propellant is IsP = 250 sec, Assume a nonrotating earth and
neglect atmospheric drag.

It can be seen that the effective mass ratio for each stage is
the same, namely,

480 _ 120 _

160 Lo
Using Equation (4-83) we find that the velocity gained per stage is

Av = (250)(32.2) 1n 3 = 8850 ft/sec.

P

We find, using Equations (3-6) and (3-7), that the velocity and altitude
after the 20-second coasting period is

8850 - (32.2)(20) = 8206 ft/sec.

<
I

n g
I

(88%0) (20) - % (32.2) (400) = 170,600 ft.

The impulse of the second stage increases this velocity to 8206 + 8850 =
17,056 ft/sec. The maximum altitude is found from the conservation of
energy. At second stage burnout the total energy per unit mass is found,

using Equations (3-37) and (3-60), to be =1

2

I
% (1.706)% x 10 - (32.2)(3960) (5280) [1 + 1.706 x 10

: 8 .2
= -5.273x10 ft /sec
(3960) (5280) ] * /

Using Equation (3-60) again, we can solve for the maximum altitude

h = {3960)(5280)[(32'2)(3960)(5280) -l] = 5.790 x 10° £t ::1100 mi.
max 5.273 x 108
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It is interesting to note that if a constant acceleration of
gravity g = 32.2 ft/secE had been used throughout, the maximum height
would have been calculated to be only about 890 mi. So the variation
of gravitational force with altitude has a significant effect in this
example. '

Note also that the coasting before second stage ignition re-
sulted in a delay of 20 sec in obtaining the velocity increase due to
this second stage, i.e., it cost a velocity decrease of 8850 ft/sec for
20 sec. Thus the maximum altitude was reduced by 1.77 x 10° £t or 33.5 mi.
In the practical case, of course, atmospheric drag forces which are
strongly dependent upon velocity would occur. Thus, the coasting to a
higher altitude with its lower atmospheric density before second stage
ignition would actually result in smaller losses than if the stages were
fired in quick succession.



Chapter 5

ORBITAL MOTION

This chapter will be concerned with the calculation of tke path in space
followed by a particle as it moves in a gravitational field. Two general
types of gravitational fields will be considered: (1) a uniform field, and
(2) an inverse-square attraction toward a point. Most of the emphasis will
be on the latter, but the former is included as a relatively simple but im-
portant special case.

In the context of vehicle dynamics, we will be solving for the transla-
ticnal motion due to gravity of the center of mass, the only restriction being
that the external field be essentially uniform in the region ozcupied by the
vehicle at any given instant. This follows directly from Egn. (L-%) and im-
plies that the translational motion is as though the entire mass were concen-
trated at the mass center, i

5-1, Motion of a Particle in a Uniform Gravitational Field

In Sec, 3-1 under Case 1 we solved for the one-dimensional motion of a
uniformly accelerated particle. The more general motion includes also a con-
stant velocity component in a direction normal to the uniform force field,
thereby confining the motion to a plane,

For the case of a particle moving under the influence of a uniform gravi-
tational field, let us choose the Xy plane as the plane of motion with the y-
axis directed vertically upward. Assume for convenience that the particle is
located at the origin O at time t = O and is moving with velocity vy at an
angle y above the horizontal, as shown in Fig. 5-1.

o

Fig. 5-1
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The initial values of the velocity components are

x(0) = wvg cos v
(5-1)
y(0) = wvgsiny
Noting that the acceleration components are
ay = 0
(5-2)
ay = g
we obtain the displacement components from Eqn. (3-7), namely,
X = vgt cos ¥ (5-3)
1l .o
Yy = vot sin y - > &t (5-L4)
Eliminating t between Egns. (5-3) and (5-4) we obtain the trajectory
Yy = xteny - —go—0 x? (5-5)

2v3 cos®y

which is the equation of a vertical parabola, The location of the vertex
(xy, y4) is also the point of zero slope in this case and is found by differ-
entiating Eqn. (5-5) with respect to x, resulting in

2

g

Xy = o sin 2y (5-6)
2

Y = Ei_ sin2y | - (5-7)

In general, the time required to go to a given value of x is

X X

e (5-8)

B - x(0) VoGO8 7

since the x-component of the velocity is constant, Therefore, the time required
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TO reach the vertex is

v
ty = Ef sin 7 " (5-9)

This value is obtained also from Eqn. (3-6) by setting vy = 0.

For the case of a trajectory over a flat surface, the range is

v2
X = 2%y, = =2 sin 2y (5-10)
g
gnd the time of flight is
t = 2ty = ‘ET sin y (5-22)

It can be seen that the maximum range is achieved for y = L5°, and the maximum
time of flight for y = 90°.

How let us calculate the initial flight path angle 7y such that the par:
passes through a given point P at (x,vy), asshown in Fig. 5-2. 1In general,

¥

envelope of possible
trajectories

-

Fig. 5-2

-zlues of y are possible. These values y; and y- are the roots of the guadrszic
egustion in tan y obtained from Ean. (5-3).

gx2

> (1 +tan®y) - xtany +y = ©
Vo

ny
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or

2vg ovs
tan®y - —2 tan 7y + ——% y+1 = 0© (5-12)
gx

egx

where, of course, the roots must be real in order to assure the existence of
a trajectory through the point P for a given v,.

The maximum range in a given direction corresponds to a double root. The
value of this root is found from Eqn. (5-12) by completing the square, i.e,,

2
v5 2v2 ava
tany - = ) = tan®y - —2 teny +—2y +1 = O (5-13)
gx gx Ex
from which we obtain that
2 :
&Xe

where y is the initial flight path angle such that the trajectory just reaches
e point (x.,7.) on the envelope of possible trajectories for a given Vo. From
Eqn. (5- l}) we can obtain the equation of the envelope:

2 - 2

or

2va Vo
xzg = - —2 (ye-=2 (5-15)
g 2g

which is parsbolic in form with the vertex located st x = 0, y = v2/2g,

Assuming that the azimuth angle (i.e., the direction of the horizontal
velocity component) of the trajectory is arbitrary, any point within the parab-
oloid formed by rotating the envelope gbout the verticel line x = 0 will have

at least one trajectory passing through it and will thus be within the range
of a projectile of initial velocity vg.

Exeample 5-1. Assuming a given v,, find the flight path angle such that
a maximum range is achieved in & direction 45° above the horizontal.

In this case the trajectory passes through a point Xe = Yo On the trajectory
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envelope, since the maximum range is tc be calculated at 45° above the horizon.
Dividing Eqn. (5-15) by x32, we obtain

1 = - 2ve (He _ 5 )
8Xe ‘Xe 28%e
or, using Egn. (5-1k),
—2ta.n7(l-%'tan7) # A
from which we obtain
tan vy = 1442
or
L. o
Y = 675

The range is found from Egn. (5-14) and is equal to

v o N2
ol )

5-2. Kepler's lLaws and Newton's Law of Gravitation

We turn now to the study of the motion of a particle under the influence
of an inverse-square gravitational attraction.

The principal factors that influence the gravitational force on a body
were originally deduced by studying planetary motions. Kepler, after a care-
ful analysis of the observational data of Tycho Brahe, found that he could
predict the motions of the planets on the basis of the following assumptions:

1. The orbit of each planet is an ellipse with the sun at one focus.

2. The radius vector drawn from the sun to a planet sweeps over equal
areas in equal times.

3. The squares of the periods of the planets are proportional to the
cubes of the semi-major axes of their orbits.
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These are Kepler's laws. The first two laws were published in 1609 and
the third in 1619, Thus, they preceded Newton's laws of motion by nearly 70
years. As a matter of fact, Newton deduced from Kepler's laws and his own
laws of motion that the gravitational force between two particles lies along
the straight line connecting them and is of the form

Fp = -G“Zln—-%é (5-16)

where m; and mp are the masses of the particles, r is the distance between them,
and ¢ is a universal constant that is independent of the nature of the masses
or their location in space. The minus sign signifies a force of attraction;

the value of the universal gravitationzl constant is

G = 6.67 x 10™%m%/gram sec® = 3.kl x 107°ft*/1b sec*

Egn. (5-16) is a statement of Newton's law of gravitation.

In addition, Newton showed that the gravitational force of a uniform
spherical shell on an external particle is the same as 1if the mass of the shell
were concentrated at its center. By superimposing the effects of successive
spherical layers, it is then szpparent that the masses of the sun and planets
can be considered to be concentrated at their respective centers, providing
that the density of each is sphericelly symmetric about its center,

5-3. The Two-Body Problem

Let us consider the mutual gravitational attraction between two spherical
masses, which, as we have seen, can be considered as particles in calculating

Fig. 5-3
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their translational motion. In accordance with Newton's law of gravitation
the force is

P15 & fo) = G ek (5-17)
(x4 + rg)g

Because r; and rp are measured from the center of mass, we know that

I - Iz (5-18)
To ma
Therefore,
Pym = Gl (5-19)
e
1
where
X = g2 (5-20)
myy 2
(1 + D
end, similarly,
fo, = =3 (5-21)
T
E
where
m,m
Kz = G — (5-22)
(1 + 82)*
my

The general motion of the system of two particles will involve a uniform
translation of the center of mass, assuming that no external forces act on the
system. Therefore, we can always choose an inertial reference frame in which
the center of mass is fixed. With respect to this reference frame, we see from
Egns. (5-19) and (5-21) that each mass moves as though it is attracted by an
inverse-square force to the fixed center of mass. Thus, the two-body problem
reduces to the motion of individual particles attracted by an inverse-sguare
force tora fixed point.
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Ancther apprdach that is commonly used in astronomical work is to consider
the larger mass (say ms) as fixed and adjust the value of K;, such that the
proper relative motion occurs. Calling this adjusted value Ki, we find that

Ki = Ky (E;_%_Eg)s = CGmp (my + mo) (5-23)
1

The correction factor is seen to be (r/rl}s. The factor rZ/r§ occurs because
of the inverse-square nature of the force, while the remaining r/r, factor is
introduced to account for the linear increase of inertial forces with r, as-
suming that the angular rate of the radius vector is unchanged.

Thus, the motion of m; relative to ms can be found by assuming that

! +
fro = -% % -'Grnl(m;%l (5-2k)

It is to be emphasized that f,» as given by Eqn. (5-24) is not the actual force
on m;, but rather is that force which gives the proper relative motion, assum-
ing mo is fixed.

Also, if one assumes mp is fixed and uses Equn. (5-24) as the force equa-
tion, then any calculations of the total kinetic or potential energy of the
system will be incorrect unless one used the reduced mass

By & —Th (5-25)

in place of the actual mass m;. It can be seen that if my >> m;, then the re-
duced mass is approximately equal to the actual mass.

We carn summarize by saying that the two-body problem can be reduced to
the problem of solving for the motion of 2 single particle under the influence
of an inverse-square attraction to a given reference point, the pecint being
either (1) the other particle, or (2) the center of mass of the system. Hzv-
ing simplified the statement of the problem, we will solve for the orbit in
Sec. 5=U4.

i

5-%, Determination of the Grbit

Let us consider egain the system of Fig. 5-3 and write the equetions of
motion for my. First, rotice Thai the motions of both =, =nd ms are confined
to a single plane, nemely, the plane determined by the relstive velocity vector



-1132-

e

Attracting focus

Fig. 5-4

and the radial line joining the particles. This follows from the fact that the
forces on m; and mp have no components perpendicular to this plane. So we can
define the position of m; relative to the attracting center or focus in terms
of the usual polar coordinates r and ©. Taking r and © components of force

and acceleration, we can write, using Egns. (2-21) and (3-1), that

Fp = ma, = m(¥ - red) (5-26)

Fg = mpag = m(ré + 2#0) (5-27)
But, from Eqns. (5-19) and (5-20), we see that
= & = (5-28)
rg

where

no

(1 +-.35.'L)2
nz

Hy = G (5-29)

and the attracting focus is_the center of mass. Alternatively, from Egn. (5-2L),°
we obtain

. (5-30)
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where

B’ = G(my + mp) (5-31)

and the attracting focus is at mp,

In any event we see that the equation for the radial acceleration can be
put in the form

£-r2 = - LK (5-32)

ra2

where, depending upon the choice of reference point, the constant p is defined
as the p; of Egn. (5-29) or as the u' of Egn. (5-31). It is generally most
convenient to think of Eqn. (5-32) as a relation between the absolute accele-
ration in the radial direction and the force per unit mass toward a fixed at-
tracting focus.

Noting that Fy = O we can write Egn. (5-27) in the form
L (r2) = o0 (5-33)
dt

Eqns. (5-32) and (5-33) constitute the differential equations of motion for
the particle m,.

Eqn. (5-33) can be integrated directly, giving
r2 = h (5-34)

where the constant, h, is the angular momentum per unit mass, as can be seen
from Eqn. (3-79). At this point, it is interesting to note that the areal
velocity, i.e., the area swept over per unit time by the radius vector, is
given by

s 1
A =3 ré% = 5h - (5-35)
end is constant in accordance with Kepler's second law. Physically, it means

that the angular momentum about the attracting focus is conserved.

llow let us make the substitution
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B = %- (5-36)
and note from Egn. (5-3L4) that
o = m? (5-37)

Also, we obtain from Egns. (5-36) and (5-37) that

i 1 dud du
e el B o g BB -38
i u® 4o dt 39 (5-38)
and
ea d 1 dQ ' d2u.
= =hn — = -h2u2 emas— -
2 o2 = (5=39)

From Egns. (5-3%2), (5-37), and (5-39) we find that

~h%2 QE% - b®u® = -pu®
de=
or
a%u L
P w2 5-40)

The general solution of Eqn. (5-40) is mathematically similar to that ob-
tained previously in Example 3-2 and is of the form

. ; - -1
o= e + C cos (9 - 8p) (5-41)

where C and ©g are constants to be determined. The constant C can be evaluated
in terms of h, the angular momentum per unit mass, and e, the total energy per
unit mass. DMNote that h and e are independent of the particle position in a
given orbit, They are known as the dynamical constants of the orbit.

Suppose that we set © = 85, Then, from Eqns. (5-38) and (5-41) we see
that r = 0 at this time. Therefore, the total energy per unit mass is

1l =222 WL _ l.o 2 ;
e = 5r e = = 3 b pu (5-u2)



where

I = He E 3 (5'h3)

as can be seen from Eqn. (5-41). Finally, from Egns. (5-42) and (5-43) we
ottain

2 o HE B8 J
R = Sl (5-4L)

By a proper choice of the reference line from which © is measured, we can
cause €5 to be zero. Then, from Egns. (5-41) and (5-44), and setting 65 = O,
we obtain the equation of the orbit:

hE
- ST (5-45)
R

1 +2 =— cos ©
u2

where we have arbitrarily chosen the positive square root for C and the refer-
ence line for @ is fixed accordingly.

So we see that, for a given gravitational coefficient p, the size and
shape of the orbit is entirely determined by the two dynamical constants
e and h. Eqn. (5-45) is the polar form of the general equation of a conic sec-
tion as shown in Sec. 5-5.

5=5., Geometry of Conic Sections

In this section we shall present the geometrical characteristics of conic
sections that are most important for our purposes. With this background we will
then be able to correlate the dynamical and geometrical characteristics of the
various possible ortits.

The equation of the general conic, written in terms of polar coordinates,
is
F o ot (5-16)

l + ¢ cos ©

where ! is the semilatus rectum and € is the eccentricity. It can be seen
that ¢ is just the value of r corresponding to © = * ﬂ/2. Also, it is the
paremeter governing the size of the conic section. On the other hand, the
eccentricity = determines its shape, as we shall see,
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Fllipse. The ellipse is a conic section for which 0 £ e < 1. (Consider
the cirele to be the special case for which ¢ = 0.) It can be defined as the
locus of points whose distance from & given point F (focus) is a constant
factor € times its distance from a straight line known as the directrix (Fig.
5-5). It is also the locus of points such that the sum of the distances to
two foci, F and F', is a constant length 2a which is also the length of the

irectrix

Fig. 5=5. Ellipse

major axis., The distance between the foci is just € times the major axis.
It can be seen from the figure that the semiminor axis b is related to the
semimajor axis =z by the equation

b = avl - €2 (5-u7)
Also, the semilatus rectum { is related to a by the equation
1 = all - e? (5-18)

So, from Eqns. (5-46) and {5-L8) one can write the equation of an ellipse in
the form
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a(l - &2 "
l+ecos® (5-49)
This equation is convenient when the ellipse is given in terms of its

geometrical constants a and .

It can be seen that the angle © is measured from the position where r is
a minimum. For the case of orbits about the earth, this minimum r is known as
the perigee distance

5 = a(l - € (5-50)

g
o)
+
M

and the corresponding point on the orbit is the perigee., Similarly, the point
of maximum r is known as the apogee and the apogee distance is

T R (5-51)

& 1 = g

From Eqns. (5-50) and (5-51) we see that

a = % (rP +rg) (5-52)

indicating the reason why a is sometimes known as the mean distance. (Note
thet a time average is not implied here.) From Eqns. (5-50) and (5-51) we
also find that

¢ = == (rg - 1) | (5-53)

The area of the ellipse can be calculated by noting that it is just the
projected area of & clrcle of radius a onto a nonparallel plane, resulting in
a foreshortening ratio b/a along the minor axis. Thus, the total area of the
ellipse is

A = 7e2(Y) = xeb | (5-54)

Parabola. For a given perigee distance rp, Ve see from Egn. (5-50) that,
as the eccentricity < approaches unity, the semimajor axis a approaches infinity.
Also, the second focus F' recedes toward infinity. In the limit, € = 1 and the
conic section is parabolic in form, as shown in Fig. 5-6.



directrix

Fig. 5-6. Parabola

From Eqn. (5-L6) we obtain the equation of the parabola:

= ¢ .
s 1l +cos © (5-55)

The semilatus rectum in this case is seen to be

! = erp | (5-56)

Hyperbola. As we have seen, Eqn. (5-46) is valid for all conic sections
and the resulting curve is a hyperbola for € > 1. The principal geometrical
perameters are shown in Fig. 5-7. The hyperbola can be defined as the locus
of points such that the difference of their distances from two fixed foei F
and F' is a constant length 2a, where, as in the case of an ellipse, the separa-
tion of the foci is 2ae. It can be seen that the hyperbola has two parts or
branches which are separated by a distence 2a, again known as the major axis.
These branches approach ssymptotes making an angle P with the major axis where

g = cos”*1/e) (5-57)
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Fig. 5-7. Hyperbola

“he semiminor axis b is the distance from the vertex to an asymptote, measured
in a direction perpendicular to the major axis.

b = ave2 -1 (5-58)

Note that b nsed not be smaller than a. The semilatus rectum is
¢ = a(e2 - 1) (5-59)

which can be substituted into Eqn. (5-L6) to yield the general equation of the
hypertola:

- M {5_&0)

1l + < cos @

The perigee distance is

where the distance is measured from the attracting focus to the point of closest
epproach of the nearest branch., (The other branch gives the orbit for inverse-
sguare repulsion ty the same focus.)



5-6, Orbital Relationships

Relation of dynamical and geometrical constants. We have seen in Sec. 5=k
that the inverse-square attraction of a particle toward a fixed point results
in an orbit that has the form of a conic section. In Seec. 5-5 we stated some
of the geometrical characteristics of conic sections. Now let us see how the
geometrical aspects of the orbit depend upon the dynemical constants of the .
motion.

First, we see by comparing Egns. (5-45) and (5-46) that

rs +2-‘?E-§- (5-62)
and

=
= = (5-63)
53
From Eqns. (5-18), (5-59), and (5-63) we obtain

h:?.

o) =5
or, substituting for e from Egn. (5-62),
== 3 i '6
& o (5-65)

where the choice of signs refers to the elliptical and hyperbolic cases, re-
spectively. This sign convention will be continued throughout this chapter,
namely, the top sign refers to an elliptical orbit and the bottom sign to a
hyperbolic orbit.

In general the total energy per unit mass is

L - .;.ve-llé (5-66)

where v is the particle speed in the orbit. Note from Egn. (5-65) that the
total energy is negative for an elliptical orbit and positive for a hyperbolic
orbit. It is zero for a parabolic orbit. Also, note that, for a given u, the
value of a is directly determined by the total energy e per unit mass.

From Eqns. (5-65) and (5-66) we can obtain an expression relating the speed
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to the distance from the focal point for a given orbit.
2 o i
v o= B (f ¥ E) (5-67)
This is twice the kinetic energy per unit mass.

Orbital period. The period of the motion in an elliptical orbit is found
by dividing the total area by the areal velocity. From Egns. (5-35), (5=47),
(5-48), (5=-54), and (5-63), we see that the period T is given by

P - 18 _ p /&3 (5-68)

A M
This is a statement of Kepler's third law. Thus, we have seen that Kep-

ler's laws apply exactly for the case of a particle under the influence of an

inverse-square attraction to a fixed point. In the context of their original

statement, i.e., the solar system, they are only approximately true because:

(1) other planets cause orbital perturbations, and (2) the constant p is not

independent of the planet's mass. Other applications of Kepler's laws, such

as their use in calculating satellite orbits sbout a planet, may show signifi-

cant deviations from observations due to the fact that the planet is not exactly

spherical but may be slightly oblate.

Eccentric anomaly. One is often faced with the problem of establishing
the position of an orbiting body within its orbital plane at some future time,
For a given gravitational constant p, one needs to know two independent geo-
metrical constants such as a and € and also the time t since perigee. The cal-
culations are aided by introducing the parameter E, known as the eccentric
anomaly. Its geometric significance is shown in Fig. 5-8.

Recall that the ellipse can be considered as the projection of a circle
of radius a on a non-parallel plane, causing a foreshortening factor b/a in
the direction of the minor exis. Reversing this process, we find that the
point P on the ellipse corresponds to the P' on the auxiliary circle., The
angle E, measured at the center O, between the perigee and P' is known as the
eccentric anomaly. The familiar angle © giving the actual position P relative
to the focus F is known as the true ancmaly. The equation relating E and ©
is found from Fig. 5-8 by noting thet




Fig. 5-8

where b/a is the foreshortening factor. Thus
rsine = % (a sin E)

or using Egns. (5-47) and (5-49), weé obtain

N1 - €2 sin ©

sinE = Zsin6 = (5-69)
b l+ € cos @

which cen be reduced by direct trigonometric substitution to the form

tanE = }._._..._.._1'6135.1'19. (5'70)
2 l+e 2



5=7. Time of Flight

Elliptical orbit. There remains the problem of relating the eccentric
anomaly E to the time t since perigee passage. To do this we note that the
radius vector FP sweeps out equal areas in equal times. Similarly, the line
FP' sweeps over egual areas in equal times, Thus, the area swept over by FP'
since perigee passage is just (ma2)t/T. But this area is also the sector area
(1/2) a2E mirus the area of the triangle OFP'. So we can write

2
et _ 1 aZF - L aZ¢ sin E
T 2 2
or
m
t = — (E- ¢ sin E) (5-71)
2n
The quantity
M = E-esinE (5-T2)

is called the mean anomaly and is the angular displacement of a line moving
at the average angular rate (2n/T) of the orbiting body.

In order to calculate the time of flight between any two points ©; and
€2 in an elliptical orbit, we have merely to calculate (tz - t;) where t; and
t2 are the corresponding times since perigee. These are computed by first
evaluating the eccentric anomaly E from Eqn. (5-69) or (5-70) and then using
Egn. (5-71) to obtain the time.

The reverse problem, namely, that of finding the position if the time
since perigee is given, is more difficult. It involves solving Eqn. (5-72)
for the eccentric anomaly when the mean anomaly is given, and this requires
the solution of a transcendental equation., Then Eqgn. (5-70) can be used to
chtain ©. We also find that

r = all - e cos E) {5-73)
where we have eliminated & between Egns. (5-49) and (5-70).
Hyperbolic orbit. The time since perigee can also be calculated for the
case of hyperbolic orbits by using en asuxiliary angle H which corresponds

roughly to the eccentric anomaly E for elliptical orbits. Without going into
the detalls of the geometry and the derivation we will present the results.

The suxiliary angle H is obtained from



:;' = Jve2 = 1 sin © (5'?1‘)

l + e cos ©

or from

H . e - 1 e : ¥
-g;gn_é.,_/&_-'_ltane (5-75)

corresponding to Egns. (5-69) and (5-70) for the elliptical case. The value
of H is limited to the range -n/2 € H £ n/2 and, of course, © is limited to
the range |0| < (7 - @) where @ is the asymptote angle as given by Ean. (5-57).

The time since perigee is
a3 '
t = — (e tan H = v) (5-T6)
i) .

sinh v = tan H

where

or

vy = 1n [tan (E +-§)] _ (5-77)

Corresponding to Egn. (5-73) we have
= ey 4 -
r = a (c =5 1) (5-78)

Parabolic orbit. The true ancmaly © can be calculated as a function of
r or T by using Eqns. (5-55) and (5-56). First we obtain

cos 8 = 2(31_9) -1 ' (5-79)

Differentiating Eqn. (5-79) with respect to time and using Eans. (5-34) and
(5-63), we also obtain

sin @

2ry . } 2ry . ;
_EB r = ._EE r {5-80)
h K



Other convénient forms
that

tan

olo

and also
tan

S
2

The time since perigee

-126-

are obtained from Egns. (5-79) and (5-80) by noting

- iz . 2.7 (5-81a)
1l + cos © k rp _
= —S:'L:n e = —I-.T = tan ?’ (5“81b)
1l + cos © re

can be obtained by using Egns. (5-3L4), (5-56), and

(5-63) to give

and, substituting the basic
there results

2 2
" RPN R
(1 + cos @)2 cos4 g

which can be integrated, giving

8
3
/Erpu/\ d 8 - &
g O cos* g
: 3
2r
| —2 (tan © ¢Lgan® E)
L 2 3 2

=

or

t = (5-82a)

Of course, an exactly parsbolic orbit will not exist in practice. It is
desirable to be gble to calculate the time of flight for approximately parabolic
orbits, i.,e., for ¢ ~ 1. This can be accomplished by taking the time of flight
equation for the elliptic case and expanding in terms of the deviation & of
the eccentricity from unity. The result for the time since perigee is

n
0w

+ = (1 -

| 2r 5 -
! ZZB [(1 + = ) tan S+ o (5-82b)

[



where

This result 1s approximate btut gives quite good results for -0.2 < < C,2
and |[6| < n/2. Tt avoids the difficulties of calctulating E or H in the ellip-
tical or kyperbolic cases, respectively, when = =~ 1 and these angles tend to
te very small.

5-8. Satellite Orbits sbout the Earth

In this section we will be concerned with planetary satellite ortits in
vhich the mass of the orbiting body is negligible compared to that of the planet.
In particular we will turn our attention to orbits about the earth,

Circular orbits., We note from Egn. (5-29) that

Ho= Gmg
where me 1s the mass of the sarth where we neglect the satellite mass, However,
it is more convenient in solving earth satellite problems to obtain the gravi-

tational constant p in terms of the acceleration of gravity g. At the earth's
surface the radial force due to gravity on a unit mass is

or, solving for u,

where a spherical earth is assumed of radius R.

R = 3%960mi = 20.91 x 10° ft
& = 32,2 ft/sec® = 7.90 x 1C% mi/kr®
W= 1407 x 10™® £1t%/sec® = 1.239 x 10*2 mi®/nr?

Now suppose that a satellite is in a circular orbit at the earth's surface,
assuming no atmospheric drag., The gravitaticnal attraction per unit mass will
equal the centripetal acceleration,



or

where v, is the circular orbit speed at the earth's surface.
Vo = 25,950 ft/sec = 17,700 mi/hr

From Eqns. (5-83) and (5-84) we obtain p in terms of v,

The total energy per unit mass in this reference orbit is

L i
e =-—“V2———
B 2 ¢ R
or, using Egns. (5-84) and (5-85),
1 5 1
ECZ-E‘.TC:—'é'gR

(5-8L)

(5-85)

(5-86)

For a general circular orbit, the speed v 1s found by equating gravitational

and centripetal force magnitudes.

oo
r r=
whichk reduces to
Vo= v, JFE? (5-&1)
with the aid of Eqn. (5-85). The total energy is found from Egn. (5-565).
e - 3vw-E o 223 (5-88)
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which simplifies with the aid of (5-8%) and (5-87) to the following result for
the case of a circular orbit,

[ENb]

- (5-89)

L
€ = " or

Escape velocity. The minimum =peed at thke earth's surface which is neces-
sary in order to escape from the earth i¢ known as the escape velocity vo.. It
is the speed that corresponds to a parabolic or zero energy orbit., Setting
e =0and r = R in Eqn. (5-88), we obtain

Ve = V2 Ve (5-90)
or, numerically,

Ve = 36,700 ft/sec '= 25,000 mi/hr

Elliptical and hyperbolic orbits. Suppose that an earth satellite has a
speed v and flight path angle y at a certain point in its orbit, as shown in
Fig. 5-9, (Wote that 7 is the angle of the velocity vector ¥ above the local
horizontal, tke local vertical being opposite to the direction of the gravita-
tional force at that point.) From a knowledge of r, v, and ¥y, we can calculate
the principal paramsters of the orbit, -

#lg. 55

The total energy per unitv mass is found from FEgn. (5-88).
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Tre angular momentum is

hH = rvcosy

(5-92)

From Egns. (5-65), (5-85), and (5-91) we obtain an expression for the
semimajor axis

'V'E
= "————E—:;—g (5-93)
L =

Mo
1]
H

2

where the upper and lower signs refer to elliptical and hyperbolic orbits,
respectively. Note that a is independent of the direction of ¥,

The eccentricity is found by substituting expressions for e and h from
Eqns. (5-91) and (5-92) into Egn. (5-62).

g = Jl +.(%92 (%:)2 [fﬁ;)a = 2-%} cos2y (5-94)
Using Egn. {5-93), this can be written in the form
= =
e = V1o (D) cos?y (5-95)

¥nowing & and ¢, the perigee distance can be calculated from Egqn. (5-50) or
(5-61). ;

(5-96)

Another parameter of importance is the value of the true anomaly o, or,
equivalently, the location of the perigee.

For example, for the case of an
elliptical ortit, we find from the orbit eguation (5-49) that

[% (1L- ¢ - 1]

Tifferentiating with respect to time, we obtain

cos 8 =

o -

sin 8 = L [E {1 - Eeq o=
= re



A

and thus find, by dividing the equations, that

cot @ = cot vy [- - x ] (5-97)

B(1L-¢2).
T

where we see from Fig. 5-9 that

R s
By s (5-98)
But, from Egns. (5-93) and (5-9k)
Etr-e8 = B PR (5-99)
r T = \RNY cosT7 5-99

so Eqn. (5-97) can be written in the form

cot @ = cot y {l - lz ]
(g (;:r;) cosZy

or

. sin y cos ¥ (5-100)

cos?y - () ()"

This result 1s also valid for parabolic or hyperbolic orbits.

The period is found from Egns. (5-68), (5-85), and (5-93).

r

T = or /af . [Eﬁ?ﬁzje]ﬁfé (5-101)
Ve

where the numerator is the periocd T, of a circular ortit at the earth's surface.

T, = E%B = 1.4C7 hr = 84,4 min
- ;

Finally, 1t 1s conveniernt to obtain an expression for the speed at any point
in the orbit as a function of the radial distance r and semimajor axis a. From
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Eqn. (5-93) we seelthat
R -R
v = v2 (23 FY) (5-102)

The equations have been based upon the speed v, of a circular orbit at the
earth's surface, i.e., at a distance R from the center of the earth. In all
cases they could be interpreted as applying equally well to any circular ref-
erence orbit at an arbitrary distance R from the center of a large, spherical
attracting body such as &a planet. In each case the circular speed v, would be
calculated for the reference orbit of radius R.

5.9. Examples

Example 5-2, An earth satellite has a perigee speed of 30,000 ftfsec and
an spogee speed of 10,000 ft/sec. Determine Tpr Tas € and a.

Since angular momentum is conserved and since y = O at perigee and apogee,
we find from Eqn. (5-92) that

30,000 rp = 10,000 rgy
or
EE B i1
Ty s

From Egns. (5-52) and (5-53) we obtain

¢ o TatT | LoTN s

Tg * Tp 1+ /ra

The total energy e is conserved, so we can equate the values computed from
Eqn. (5-66) or (5-91) st perigee and apogee.

1ls
(30,000)2 - 10T x 1077 % (10,000) 2 -

1.407 x 10*°®
I‘p I"a

-

where the units for each term are ft2/sec®, We have already found that Ty = Jr

so we can solve the above equation for rj and ry. g
rp = 23.45 x 10° £t = Lbho mi
Pe & TOSS % 10% £ = 15,3520 @i
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Also, from Eqn. (5-52),

1 ' _
e = 3 (rp +r,) = 46.90 x 105_ft = 8880 mi

Exemple 5-3%. Immediately after the last stage burnout of a rockét, the
following data are recelved concerning its motion: '

r = L4200 mi = 22,18 x 10° £t
r = 12,000 ft/sec
6

1.41 x 1073 rad/sec

where the reference frame is an inertial system with its origin at the earth's

center. Find the apogee distance r, and the time of the rocket's return to
the earth. (See Fig. 5-10.)

Fig. 5-10

First calculate the initial flight path angle y using Egn. (5-98).

thi P e a0 g ag
rd 31,270
y = 21°

The burnout veloeity is

v = NP2 + 1262 = 33,500 ft/sec
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Calculating the ratios (at burnout)

l - 2-5—:,-29-0— - l. 29]_
Ve 25,950

L o &EQQ = 1.061

R 3960

we obtain the eccentricity e from Eqn. (5-94).
€ = ~N1l-.3578 = 0.801

Since € < 1, the orbit 1s an ellipse. The semimajor axis is cbtained from Egn.
(5-93) . :

e 299 . 1800wt = 108
a 0.219 ;100 m 95.5 x 10~ ¢

The apogee distance is

r, = a(l+e€ = 32,600mi = 172 x 108 ft

In order to calculate the time of flight we need first to calculate the
angles ©; and ©-. The true anomaly ©, at burnout is found from the basic equa-
tion of the ellipse, Eqn. (5-19), or from Egn, (5-100).

©; = L7.5°

The corresponding eccentric anomaly E is found from Egn, (5-70).

tan %? = 1 - tan

1l +

m

01

2l = 1N
3 1463

m

and therefore,
El = l6c6°

The total period for the ellipticel orbit is obtained by using Eaqn. (5-101)

1.407
T CageE T PE



=235~

Therefore, the time since perigee at burnout is

By - éﬂ (E, - € sin E;) = 0.133 hr
"

in accordance with Egn. (5-71).

By a similar process we can calculate ©2, the corresponding eccentric
anomaly Es, and also the time before perigee at which the rocket hits the
earth. The results are

@2 = 37.5°
B, = 12.9°
ta = 0.10L hr

The total time of flight from burnout until impact at the earth's surface
is E

T -ty - ts = 13.50 hr
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INTRODUCTION - NOTATION AND NOMENCLATURE

A. Kepler's Laws of Planetary Motion

On the basis of observational dats gathered in the latter part of the
16th century by Tycho Brahé,.his disciple and colleague, Johannes Kepler
announced the following three laws of planetary motlon.

l. The radius vector of each planet-with respect to the sun as the
origin sweeps over equal areas in equal times.

2. The orbit of each planet is an ellipse with the sun at one of its
foei. T

3. The squareé of the periods cof thP planets are to each other as the
cubes of the major gemi-axes of their respective orbits.

) From the three L&WE of Planetary Motion,; Issac Newton deduced the Law
of Universael Gravitation -~ every two particles of metter in the universe
attract each other with a force which acts in a line joining them, the mag-
nitude of the force being proportional to the product of their messes and in-
versely proportional to the square of their distance apart.

Except for the effects of relativity, Newton's Laws of Motion and of

gravitation spparently can be used to explain completely the motion of the
macroscopic celestial bodies of our solar system. '

B. Notation for the Ellipse

Because KEplerfs Laws furnish a good approximstion to the motion, it is
natural to adopt notation and nomenclature which epply to orbits which are
conic sections;_particularly to =2lliptical orbits.

If a body obeys Kepler's Laws and moves in arn elliptical orbit, its
position will be specified for all time provided that the size, shape and
position of the ellipse in space, and the location of the body on the
ellipse at some time, are given.

The size and shape of the ellipse are specified by its elements; usually
the semi-latus rectum, p, and the eccentricity, =2 or, alternatively, the
semi-major axis, a, and semi-minor axis, h. '

'_Thé elements and relations between them are shown in Filgure 1.



C. Spatial Orientation of the Ellipse

Tre ordeatation of the ellipse in space is specified with respect to a
refererce plane and a raference line in that plane, as shown in Figure 2.
Two reference plares are commonly used; the plane of the ecliptic is the
plane of the Farth’s orbit about the Sur and tke eguatorial plane is the
plane normal to the Barth's axis of rotation, through the center of the
Earth. The line of intersection of these two plares in the direction of the
constellation Ariess is the commonly used reference direction and is called
the wvernal equinox, oP.

If the origin for the reference line is the center of the Earth, the
axes are geocentric; 1f the origin is the center of the Sun, the axes are
heliocentric; if *he crigin is the center of the Moon, the axes are seleno-—
centric.

The line of interzection of the plane of the ellipse and the reference
plane is the line of nodes. When the body pagses through the line of nodes
from South to North, it passes through the ascending node. (Conversely, the
descerding node is the half of the node line which the body passes through
from Nortr to South.)

The longitude of the ascending node, dp, is the angle subtended at the

crigin by the vernal eguinox and the ascending node.

The angle of inclination, i, is the angle between the plane of the
ellipse and the raference plane. It is measured in the plane normal to both,
in the counterclockwise direction, looking from the ascending node toward
the origin.

The point on the ellipse which is closegt to the originm (the nearest
EEEE) is the periapsis. It is called the perigse if the axes are geocentric
or the perihelion if the axes are heliocentric. 7The most distart point from
the origir is the apoapsis, apogee or aphelion. The periapsis and the
apoapsiz are joined hy the line of apsides, (which coincides with the major
axis of the ellipse). The angle from the ascending node to the periapsis
measured ir the direction of motion of the body is the argument of periapsis,
{perigee or perihelion) and is denoted by the symbhol, .

D. Position of the Body in the Orbit

Tre pcesition of the body in its elliptical orbit is specified by the
true anomaly; v, the poclar angle in the orbit, counted from the periapsis;
or by the argumest of the latitude, u, the polar angle measured from the
ascending rnode.

u o= v+

il 5



The time &t which the body passes the periapsis is the epoch, and usually
is denoted by T, or T.

E. Additional Definitions

The quantities which have been defined are sufficient to specify the
position in space of a body which obeys Kepler's Laws, for all time. A number
of additional quantities are commonly used, among them:

The eccentric anomaly, E, is an suxiliary angle defined by

a-r = aecoskE
where r 1s the radius from the origin to the body.

The mean anomaly, M, is the angle which would have been described by the
radius vector if it had moved uniformly with the aversge rate, or mean motion,

-
P
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