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SYMBOLS AND DEFINITIONS

gemi-major axis of ellipse

semi-minor axis of ellipse

eccentricity of ellipse e2 =1 - bv3/a® =1 - p/a

eccentric aromaly, auxiliary angle defined by a - r = a e cos E
incliraticn of Grbit. Angle between orbit plare and reference plane,
positive when measured counterclockwise, loocking from ascending dode
toward origin.

mean ancmaly

semi-latus rectum or parameter of ellipse p = b2/a = a(l-e2)

radius from focus to body

Epoch - time of passage of perigee

time

argument of the latitude. Angle in orbit plane from ascending node to body.
true anomaly - angle in orbit plane from perigee to bedy.

longitude of perigee, angle from ascending node to perigee.

longitude of the node. Angle from vernal equincx tec ascending node.
augle from verral equincx to descending node.

the vernal equinox. (P is the symbol for the corngtellation Aries, the
Ram. The verzal eduinox is a line toward the First Point of Aries. In
heliocentric coordinates, the Earth crosses the extension of the vernal

equincx througk the Sun at the beginning of Sprizng. Altermatively, we
say that the Sur crosses the verral equircx at the heginning of Spring. )
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INTRODUCTION TO CELESTIAL MECHANICS

(This first section, up to the three body problem, follows very closely the
presentation of Professor Wilfred Kaplan at the seminar series,"Trajectory
Analysis, Guidance and Control of Space Vehicles," University of Michigan
Institute of Science and Technology, 1959.)

We will consider an idealized solar system which consists of n point
masses, Py; Pz, <. Pn'of constant mass m;, mz, ... I, attracting each other
according te Newton's Law of Gravitation. If F,p is the force exerted by
Ps on Pp

[Fin| = k2 Wal2 1.1
rfa

where k® is the constant of gravitation and r;> is the distance from P, to
Po. Since the force is an attractive force,

3
Fio = k2 Ml2 Ii2 1.2
=
iz nz
.

where Z12 i3 a unit vector directed from P; to Ps.
Ti2

For a "proper" or "Newtonian" reference frame, Newton's Laws of Motion
hold, thus for example,

4 -> - >
m;_a;_ = Flc'?. + Fl3 C T F_‘Ln 1-5

bl i §
where a, is measured with respect to a proper frame.

Ir terms of such a coordinate system with origin O, the motion of P3, ...
Pp is goverred by the equations

2
i
my —rl" = k.E Z Eﬂrj- \1“ - i) 1.b
at# ra.
where 1 = 1,2,...1
- -+



'
amizz denotes summation omitting the term for which j = i. For exsample,

&y
1

dt2

=kaz—icra-rl) s

This single vector equation represents three equations for the three components
-5
of ry

P
m ¥ - i B0 (2 - %) 1.6
at2 iy
j=2

and similar equations for yi1, 21, X=, ¥y=, Z2, etc.

ry = [(xy - XJ + (y1 - yj) + (21 - z3 )211/2

There are 3%n second order equations of motion, hence the n-body problem is of
order 6n, non-linear due to the inverse square law of attraction.

If we introduce the potential, U, which we define in this case to be

n'l n'l
2 <11 =
v o= X Z WM (1)) 1.7
2 rij
1=1 j=1
F.. = 4,u
so that FiJ = - grad U.
Then 1.6 may be written
2
o T8 w o oU 1.:8
dt? dx;

and the general equations 1.4 may be written:

Q%
mi = - = gradiU (i=1,.-.,11) 109

at?




where grad;U is the vector with components BU/ﬂx,, &/ 3y aU/Bzi.

tre scalar product of 1.9 with d¥;/dt and summing over i

-+ 2 o
drs ] dr

Zmi_.ﬁ.dri = Z,——-l—.grariilr

dt

; dt dat2 .

i i
dlZm-d;i d_iti__dU
i { —= 0 —= = S
at 2 dt dt dt

i
n
% miv§ + U = const = Cj3
Foo)
d=

where

NN )

Taking

L)

1.11

1.2

1.13

1.11 is the erergy integral--when the motion is due to gravitational forces

only, energy is conserved.

If we multiply each of equations 1.9 vectorially'by';i and sum over i

N =
mr; X T = - ¥; X gradiU
t

i i

=
d dr
= r. x —1
dt Ez il dtj)

i

1]
(@]

1.14

Since E: ;i x grad;U = 0 as can be seen from 1.4, Thersfore, from 1.1k

i

= constant vector

a|ﬂ+
.

n
>
mrx

i=1

I-3
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1.15 is the expression of conservation of angular momentum and is the equiv-
alent of three scalar squations for the conservation of the individual com-
ponents of the total angular momentum:

n
dzj dys
m Vi = 7 " = C
1\ 3 3t =
i=
2 dx; a |
- Z.
i
mi | 2z4 - = Ca
E . th 1 at
i=]
n
dys (k.o
Z my | X5 it =-¥i s = Cag 1.16
at at
i=1 '
Adding equations 1.9, we see that
Ii =
de
Z m —4 = 0 1.17
dt®

i=1

This is apparent from inspection of equations 1.4, for example.) 1.17 can
pp b ) P
be integrated to give:

I
.—)
E: my “i = constant vector 1.18
dt
=1
and in terms of components
mi jii.;:. = s
at
i=1
n
d.
F m =k = Cs 1.19
i at
i=1
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n
E: m: —i = Cy 1.19 (cont')

Each of equatiors 1.19 can he integrated again to give

=l
I
[>7s
=]
[*H
>
e
1}

Cst + Cga
i=1
n
my = miyy = Cet + Cg
=
n
mz = $1 m;z; = C+t + Cip 1.20
Ji. i
i=1

Trus we have accomplished 10 of the 6n integrations required to solve com-
pletely the n-body problem. The ten integrals tell us that, in this case,
energy is conserved; each of the three componsnts of the angular momentum
vector 1s conserved, each of the three components of the total linear momen-
tum vector is conserved, and each of the three components of the radius vector
to the center of mass at most increases linearly with time. We have appar-
ently made remarkable progress--only two more intsgrations are required to
solve completely the two-body problem, only eight more wculd solve the thres-
bedy problem.

The two remaining integrals of the two=body problem are elementary. Tne
greatest mathematicians of all time have spent years attempting to solve the
thrze-body preblem and have not advanced the sclution considerably beyond
the ten elementary integrals we have already given.

TZE BEESTRICTED THRES-BODY PRORLEM

/
Tne restricted thres-bedy problem is that of determiring the motion of
a body of infinitesimal mass under the gravitational influence of two todies
¢f firite mass. Although this problem has rot been solved, scme progress
has bean made toward the soluticn and some charscteristics of the motion are

Xnown, Since this problem cleosely approximates that of determining the motion

I-5



of a spaceship in Earth-Moon space, for exemple, we will very briefly review
some of the facts which are known about the motion.

REFERENCES: (1) SPACE TECHNOLOGY, CHAPTER VII
(2) MOULTON, CHAPTER VIII
(3) WHITTAKER, CHAPTER XIIT

The system to be studied consists of two finite bodies, the Earth and the
Moon, for example, which we will assume to move in circular orbits about their
common center of mass, and an infinitesimal body subject to their attraction.
Following Moulton, we will choose the unit of mass to be the sum of the Earth's
mess end that of the Moon. The unit of distance will be the (assumed constant)
distance between the Earth and the Moon (239,073.7 statute miles). The co-
ordinate systems used are shown on the previous page.

In the Xj, Yos 2o inertial frame, equations 1.4 become:

g % - K(1-p) (X0-X01) _ Ki(X0-Xo2)

r3 r3
= K(2-p) (Yo-yoi) _ Ku(yo-Yoz)
Yo = 3 3
Iry Irs
g K(l‘l-’-)zo Kpzg
; ZO = ki 3 - 3 1.21

ri Trs

o &re the coordinates of the particle; X5, yoi, are the co-
ordinates of the earth; and xgs,; yo2 are the coordinates of the moon. Xxgi,
Yois %oz, Yoz are functions of time. K is the product of the gravitational
constant and the total mass of the earth and moon, and p is the relative mass
of the moon.

where X, Yo, 2

If we transform equations 1.21 to a rotating coordinate system, X, ¥, Z,
in which the earth and moon always lie on the x axis and the origin is at the
center of mass of the earth and moon (the angular velocity of the rotating
coordinate system is m}, then the equations of motion are:

% - 2ay = ofx - BAoH)(X=x1) _ Ku(x-%p)

)
r3 r3 1.22

I-6
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y_+ 20k =
r3 r3
¥ il - K(1-p)z _ Kez 1.22 (cont')
e P

The earth and moon cocrdinates x; and Xo are constants in this system.

If we define a funetion W

W(x,y,2) = i-mz(x2+y2) + K(l‘u) + K 1.3
- ry rs

then the equations of motion can be written:

oy : oW

X - 20y = —

ox

. oW

¢+ 2 _ oW

¥ + 2wx Sy
¥ = oW 1.24

dz

Multiplying these by 2%, 2y, 2z, respectively, adding and integrating, we
obtain:

(x)2+ (3)2+ (2)2 = v2 = 2w -¢C 1.25
or:
V2 = oP(xB+yR) + 2K (1-p) + 2K o 1.26
ry ra

1.26 is called Jacobi's Integral and the constant C is the "Jacobian Con-
stant.” As reasoned by G. W. Hill, in real motion v® must be positive.

Thus, for & given C it is possible to draw contours in the x, y plane on which
V = 0. These contours will be boundaries between regions where V2 is posi-
tive and regions where (formally) V2 is negative. A real particle cannot
egter the region where V° is negative, that is, it cannct cross the contour

V= = 0.

I-8
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A set of such contours (not to scale) is shown in Figure 1 copied from
Figure 7-3, page T7-9, Space Technology. (Note: Chapter VIII of Moulton dis-
cusses the three-bedy problem in some detail. Also Chapter XTII of Whittaker
gives a fairly complete account of researches on the three-body problem.)

The ¢ values are in numerical order, so that C- < Cz < Cg < Cy4;,; etc.
It is seen that for initial cornditions corresponding to C, the body can move
in a closed path about the sarth or the moon but cannot move from earth to
moon. For initial conditions corresponding to C between Co and C, the body
can move between the earth and the moon. The C; contour is a boundary he-
tween contours which enclose the earth and moon and contours which are open
behind the moor. Thus, for conditions between C, and Cs, for example, the
beody can escape from the earth-moon system. The two points Cg are equidistant
from the earth and moon and are called libration points. The known analytical
solutions of the three-body problem are due to Lagrange, whc showed that the
eguations of moticn are satisfied if the body is placed at ore of the libra-
tion points with the appropriate velocity to remain there. (There are other
points, on the x axis, which also fulfill the requirement.) The libration
points are of some interest as possible locations for space navigation aids,
since for -earth-moon space the motion is stable. (If one wishes to use a bell-
buoy, it's nice to know where it is.)

It is worthwhile to point out the fallacy of the popular notion that to
travel from the earth to the moon one must only project a body toward the
moon with veloeity sufficient to carry it beyond the "zerc gravity" poirt,
the point where earth and moon gravitational fields Jjust balance each other.
This point is located about 90% of the distance from the earth to the moon,
whereas the contour Cs (whizh is the boundary between contours which permit
passage to the moon and those which do not) crosses the earth-moon axis about
85% of the distance from earth to moon. The discrepancy is due to the motion
of the earth and moon about their common center of mass. For the earth-sun
asyatem, the "zero gravity" print is asbout 165,000 miles from Earth. Our
mocn, at 240,000 miles from Earth, provides rather strong evidence that the
"zero gravity" theory is not very reliahle.

Note that for the three-body problem the familiar laws of conservation
of ersrgy and of angular momentum do not apply to the hodies individuallywv.
Sinze all three bodies are in motionrn, they may interchange energy and momrsn-
tum. Jacobl's integral dces furnish a conservation law for the body of
negligible mass, however:

-¢ = 2(U - aHy)

REFERENCE: Buchheim, R. W., "Motion of & Small Body in Earth-Mocn Space,'
The RAND Corporation, RM 1726.



where U 1s total energy and H, is the z compornent of the arg:lar momentum
about the earth-moon axis of rotation.

Thz three-body problem has been exhaustively investigated by many, in-
cluding the world's greatest mathematicians. The restricted thrze-body prch-
lem appears to be tantalizingly close to complete solutior. E=call that the
ganeral three-bedy problem requires 18 integrals of the equations of motion.
Ten of these are furnished by the known ter: general integrals, leaving eight
tc be found. For the restricted three-body problem, cnly six mcre are
nesfed. If the metion is confined to a plane, only four more are needed.

One of these four is furnished by Jacobi’s Integral. Further, Jaccbi was
able tc show how to fird the last two integrals if only cne more can be
found. Thus, only cne more integral is needed for the complete solution of
the special problem in the plane. However, it was shown by Bruns (in a most
remarkably profound, obscure, and complex manner, see Whittaker, "Treatise

on the Aralytical Dynamics of Particles and Rigid Rodies," Ckapter XIV) that
no new algebraic integrals exist when rectangular coordinates are used, and
Poincaré has proved that when the elements of the orbit are used as variables
there are no new uniform transcendental integrals. While these proofs are of
great impeortance, one should not consider that it has hbeer proved that the
three-bedy problem is unsolvable. The simplest of all differential equations,
namely the linear differential equation with constant coefficients, ir gen-
eral possesses only transcendental integrals and no algebraic integrals.
Before deciding to tackle the problem, however, you are adviszed to consider
that Laplace, Lagrange, Jacobi, Poincaré (and hundreds of others) have shown
rather conclusively that it isn't easy.
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CHAPTER II - THE TWO-BODY PROBLEM

For the two-body problem, equations 1.4 reduce to:

2
d Ty _kz mm, - -
my o = 3 (-7
o |
2.1
Z_»
mz ? =k 3 (rl = rz)
13

If we divide by m; and m; respectively and subtract the first equation from the
second,

2 mj +

ac 1 +my .
2 (1'2 = ?’1) = "‘kz 3 (?-2 - ;'Pl) 242

dt rlz

"2.2 is the vector equation of motion of P, relative to P;. Multiplying by m,, we
see that P, moves relative to P as though it were attracted by a fixed particle
of mass m; + m;, located at Pj. P is moving subject to a central force with
center at P,. The problem also may be formulated for motion relative to the
center of mass of Py and P,. In this case, P, moves as if it were attracted by
a mass Iy located at the center of mass of P; and P,. In either case,
(1+ EE.)Z
s |

it is readily seen that for a great many problems of interest in astronautics, one
of the masses is neglibible when compared with the other and we may consider
that the motion of P, has no effect on the motion of Pj.

i — —_—
Let r=ry =r]
=By

= ¥ . :
R =— ( R is a unit vector)

- dr
=

dt
u = |TI'|

Then equation 2.2 may be written

dz?_dﬁ'_kz ml“"mz-ﬁ 5 3
dtz' T oat T r *

2-1



2=2

Taking the vector product of T with 2.3

aa
e 2.4
E &
But o
- du d - >
s e [T 2.5
Lokl )
So that
— ]
T x4 = const, vector = h 2.6

2.6 is actually the same as 1. 14 and expresses the conservation of angular
momentum.

Recalling that ¥ x 3 is normal to both ¥ and T,

—_
2+ h=F-FTx0T=0 2.7
Hence the motion remains in a fixed plane normal to .

From 2.3 and 2.6,

- my +m2
L xFB=l ——— Ex ()
T

kZ ib - T
- (m1+mz) x(Rx—r) 2.8

1 a7

2 =
—Kk (ml+mz)Rx(Ex ==

ar

a
—kz (m; + mz)ftbx (R ox——

1l

dt
=
du = 2 dR
a0 xh =k” (m; + mj) ar

and, since —}Tis a constant vector,
d > 2 .2 d —-=

2:9
x-lr‘: = 1':.2 (ml + mz)(i’? +—g)

-, .
where e is a constant arbitrary vector. Now

-
FxY -T=h. (rx9) =
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Hence, taking the scalar product of 2.9 with T,

(;xﬁ) . h =K (m1+m2)?- (ﬁ +€)

—

h-h=nh%=k? {m; + m,)(r +r e cos v) 2.10

where v is the angle between Tand e. From 2.10

2
r = s : 2. 11

kz(ml-}-rnz) l1+ecosv

If we let 5
B = a (I—ea) Z.12
kz (ml + mz)
2
Tr __..a.',__(._l...:e_)_ 2‘13

l+ecosv

2.13 is Kepler's First Law of Planetary Motion. If e is less than 1.0,
equation 2,13 is the polar equation of an ellipse with semi-major axis a,
eccentricity e, The origin is at one focus of the ellipse and the polar angle'v}
called the true anomaly in celestial mechanics, is measured from the point
on the ellipse where r is minimum, called the periapsis (perigee if the orbit is
geocentric, perihelion if the orbit is heliocentric). 2. 13 often is written

r = P 2. 14
l1 +ecosv

where p is the '"parameter" or semi-latus rectum of the conic, p = a(l - ez).
Me!' ig called the eccentricity (see Figure 1) and is a measure of the shape of the

orbit, (For e = 0, the orbit is a special ellipse, namely, a circle.) Whene =
1 the orbit is a parabola, and when e > 1 the orbit is a hyperbola.

We have

;xﬁ =_i!’1 2.6

where " —_
Iﬁ:‘rllul gin < r, u

Since 4
| . - = v
'u gind r, u = 7T at

d
B _d: S B "d'AE' 2.15
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This is Kepler's second law: the radius vector sweeps out area at a constant
rate,

Sirce the radius vector sweeps out the entire area of the ellipse in one
period, and the area of an ellipse is qra b, where b is the semi-minor axis
of the ellipse:

2m™ab=hT 2.16

£4ab 2.17

T = h

but from 2. 12
W =a (l-ez) |:1J:2 (m; + mz)] 2.18

and from the geometry of the ellipse

2
a (l-e?) = 2 2.19
Therefore:
312
2mwa’? 5. 55

T =

k-lz‘ml + mz

2.20 is Kepler's Third Law of Planetary Motion, in corrected form. As
originally stated, the law neglected the slight effect of the planetary mass, m,,
on the period. Kepler stated:

"The squares of the periods of the planets vary as the cubes of the semi-
major axes.'

From 2.13
_En
v =CQ5-1 [ e (1 5 } i 1 ] 2.21.

er e

and

=

2
1=
g =8 ) e 5. 27

dv =
r«\faz'ez-—(a-—r)2

From 2.15 and 2.22

1
2

a (l-ez)
T ./ a.zez - (a-1r)

L dt
2’dr- >

= 2.23

If we define a'new quantity, E (see Figure 3), by
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cos E = aa-er 2.24
; 1
=sin EdE = = adr
but from 2.19
1
[ 2.2 2] °
; _ La"e” - (a-r) ]
sin E = . 225
d
dE = L 1 2.26
[azez = (a_‘r)Z]Z
From 2.23:
e dr h dt
ppe it TP o 2.27
a ‘}azez - (a-r)z a]}l-ez
h dt
(l-e cos E) dE = —F7—=— 2.28
az "‘1-32'
Which, when integrated gives
(E-esinE)=n(t-T) =M 2.29
where
h = 2w 2.30

h
n =—"—"H5 /—mm =
az ’l-ez ab T

1 is a constant

n is called the mean motion--it is the angular rate in a circular orbit of the
same period as the actual motion,

E is called the eccentric anomaly. Note that when E = 0, M =0, therefore
t = T. Ttherefore is the time at perigee, sometimes called the epoch.

M is called the mean anomaly and is the angle which would have been
described by the radius vector in time (t - 1) if the motion had proceeded at

the constant rate n.

E-esinE =M 2.29

is called the Kepler equation. A plot of M vs. E, (for e £ 1.0) is shown on the
next page. It is seen that E-M = e sin E is an odd periodic function of M (hence



of t) with period 2 1 and so can be expanded in a Fourier sin series.

4

Zrd

oo
E-M=esinE = E bkainkM 2.31
k=1
where the coefficients by are given by
E
2
bk=*.,?' g e gin E gink Md M 2.32
o)
o s i inkMdM 2.33
bk =y e gin E sin i

Integrating by parts,
T

b, = 25| i k M =
k-?‘ Kk sin E cos +k

Or_.-—-"-;:;-{

cos kM cosE d.E:l 2.34

Since sin E=0atM =0 and 7" ,

e
b, = ;k gzcoskmcandE 2.35
(s}

but
2 cos A cos B =cos (A + B) + cos (A-B)
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. 1w
bkz‘;—k—[g cos (kM + E) dE + gcos (kM - E)dE 2.36
o

o

and since kM = kE - ke gin E .

/ﬁ’
b, = — Scosl-_(k+1)E-kesinE:|dE
o

k Tk
4 | 2.37
+ S cos [(k -1)E - ke sinE] dE
(8]
Now the definition of the kth Bessel function of the first kind is:
1w
1
Jk (x) = A cos (kO - x sin 0) dO 2.38
J .
hence
(o)
esin E = e E % {Jk+l (ke)+J'k_1 (ke)} sin kM 2.39
k=1
or, since s
o . 0 ' : 2.40
n I, = 3 {_‘In-ltx)+3n+l()“) :
o
esinE= 2 3y (ke) sin kM 2.41
k=l
and
[’ Jk (ke)
E=M*+ 2 e sink M 2.42
K=

Thus we finally have "inverted" Kepler's equation and have E - hence r - ex-
pressed in terms of M, therefore t. We can obtain similar series for cos E
and sin E, and from these can compute rectangular coordinates as functions of
time:

rcosv =a (cos E - e)

2

2.43

reginv=ayYl-e” gsinE
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Finally, from the above, or from

v 1l +e E
W 1o Y 2. 44

for example, we can compute v as a function of time. There are other expres-
sions for E as a series in sin kM which are obtainable by expanding the Bessel
functions of 2,42 in powers of k, See,for example, Moulton, page 169,

THE VIS-VIVA INTEGRAL

From 2.3 we have:

at? r? )
R 2 mptmy g
: - -k 5 = 2.45
but
= -
dt r dt dt r
1 dF _ 1 dR g d [1
2 dat  r dt dt <r ) 2,41
. dR .
and since T is normal to E, 2.45 becomes
d¥ 427 1 d af 47 2 \d f1
PR e QT N 3 = k“! — [— 2.48
at " 2z 2 de \dt at (my + m) g¢ (7
u2 = k% (m; + m5) .3 + const 2.49
- 1 S *

This is true for any point in the orbit, so must be true, for example, at perigee.
Letting the subscript ''p" indicdte conditions at perigee,

w® = k2 (mj + mj) L ¥ comat 2.50
P rp
2
u
const = P & _ 2.51

s (m, + m,) " a(l-e)
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from 2. 15
r2 3: =h=r_u 2.52
P p PP
and from 2. 18 .
2 2 2 2 [ 2 ]
=h™ =a (l-e k + m 2.53
r B ( ) (m, 2)
..
2 a (1-e%) l: 2 ]
12 a2 (1-¢)2 2

Putting 2.54 in 2.51,

l+e 2 1
const = - = - 2.55
a(l-e) a(l-e)

2.49 becomes
2 1
W =k (my +m,) (5 - ) 2.56

2.56 is called the "vis viva' integral. (vis-viva-force of motion). One further
relationship should be noted: from 2.6 we have T xU = h (2.6) where |[h|= ]'r"]

F..ﬂ sin 2{.'?, 5id

]ﬁsin 4}'.?": T = rd, therefore,

2.57

e
Ii
ol

The velocity in the orbit varies inversely with the distance from the center of
force to the tangent to the orbit,



CHAPTER III, MECHANICS OF A SYSTEM OF PARTICLES

References: 1. Classical Mechanics, Goldstein, Addison Wesley, 1959,

2. Theoretical Physics, Joos, Hafner, 1935.

- - - - - - - - - - - - - - - - - - - - - - -

Most of us have been taught from the beginnings of our technical education,
that Newton's three laws of motion are the most fundamental statement of the
laws of motion. Indeed, such a statement is easily defended. However, it can
be argued with some justification that Hamilton's Principle is the most funda-
mental statement of the laws of motion. Quantum mechanics, for example, -
in fact most of modern mechanics - developed by way of Hamilton's Principle.

For conservative systems, Hamilton's Principle may be stated as follows:
(Ref. 1, p. 30)

"The motion of the system from time t; to time t, is such that the line
integral

where L = T - U, is an extremum for the path of motion. "

Here T is the system kinetic energy and U is the potential. Uis a function
U(élj, qj) such that the forces are obtained from U by the prescription

NU d :
Q, =~ — b o= iaL 3.1

Note that U is a generalization of the function U given in 1.7.

The system can be described in terms of an appropriate consistent set of
coordinates and velocities as long as the generalized force can be obtained from
3.1, The product quj must have the dimensions of work.

The integral in Hamilton's Principle has just the form which we can
handle by variational methods: (See Appendix A)

t

2
1= 5 L (qi, Eq_i, t) dt 32

t
1

5=1
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and therefore a necessary condition for Hamilton's Principle to hold is

s d (8L )\ _, 2.5
8q; dt | 94

These are Lagrange's equations of motion -- obtained immediately
from Hamilton's Principle by the variatipnal technique.

Now let us obtain these equations by a different method which clearly
shows the fundamental .character of Hamilton's Principle.

Consider a system of n particles, a typical particle having mass m,
and coordinates x_ (r=1,2, ...n;i=1, 2, 3). The components of force
i
acting on it are X .
i

Then the equations of motion, 1.3, for each r and each i are:

x = ;
m. X Xr. 3
1 1

If we multiply these equations by a set of small displacements Jx_ , which are
1

arbitrary functions of time and sum over both r and i, we have 2 single equation:

E x:
i M, T
T i

1

gxriz ;i Xri (S'xr_ 3.5

1

This single equation is completely equivalent to the original 3n equa-
tions, because, since the § x_are arbitrary, we can always equate coeificients
i
of &§x_ oneach side of the equation and recover the original 3n equations.
i
Now integrate between times t, and t; and require that the Jxr_ vanish
i

att and t
o 1

£y ty
Zm;«z x_ dt = Zx Sx_ dt 3.6

g I",i. r ri é' I'i S ,i ri ri

t, £

The left-hand side of 3.6 can be integrated by parts:



2=

t
! &
Z m_ X 6x, dt= m_, X dx
F,i ¢ T i ;1 oo 1 :|
ty L.
tl
E d
e m = — 5}{ dt
T ri dt rl
ts
t1 ty
- ), m % & x,, b zmr‘f Sx_ dt 3.7
r,i r T i r,i ry i
tO tO

e, 2

And, therefore, since the § x_ vanish at t_ and t) and 5( 21
i

)is the same as

2
J(3 z\'.m X )+ ;X_é‘xr, dt = 0 3.8
1

Equation 3.8 is the most general form of Hamilton's Principle in

[}
2
X
classical dynamics, Z m,, "I is the kinetic energy. If the system is
r,i 2

conservative, a potential function exists such that

2U  _ ¢« 3.6

Then 3.8 can be written as

c+

§\ (T-U)yat=o 3.10

(o
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Thus, we have started with Newton's Laws of Motion and have derived
Hamilton's Principle in a very general form (3. 8) and in the more familiar form
(3.10) valid for a conservative system. The process is quite reversible and
we could as well have started with Hamilton's Principle and derived Newton's
Laws. As mentioned earlier, this latter process is today considered to be
somewkhat more natural than the one we followed.

Generalized Goordinates

In deriving Equation 3.8 we assumed a set of rectangular Cartesian
coordinates. (Equation 3.4) Use of Cartesian coordinates may be inconvenient,
and certainly Equation 3. 10 implies that Hamilton's Principle is valid in any
consistent coordinate system.

Let us assume that our 3n Cartesian coordinates are related to 3n
generalized coordinates by 3n transformation equations. The generalized
coordinates may not have the dimensions of length - for example, in spherical
coordinates the two angles are dimensionless. It may even be convenient to
use coordinates with dimensions of energy or momentum, and quantities such
as the coefficients of a Fourier expansion have been used to good advantage.

The transformation equations are given in the general form:

xri :xri (q_la qzs - .- q3n} B 11

From 3.11, we can express the velocity as

1 \ QX:-E_ s
%r, = g 3.12

i @Y

Similarly, the arbitrary displacement d x,.. can be expressed as:
1

0%y

§ % =Z_ L dq 3.13
j

é)qj

Substituting 3.13 into 3.6

t

RS e
P ) d -
5 < T.",i ml‘ xri n- aq‘} (5(13) t

J

+

5

(o]

( Z . 8 ZJ > 5qj) dt 3.14

3(1j



If we define' 2 Xy

X 3.15

Then the right hand side of 3. 14 can be written

51
1 . 3.16
) Ta sy
t .
o
Turning now to the left hand side of 3. 14, consider the following
relation:
p 0 ax oX
m_ X 3r1=z,—d (m_x r) '—d i 5.1
Z r Ty 3q; o (at T g rry At oy '
r,i i

In the last term of 3. 17, the order of differentiation can be interchanged
(You can check this from Equation 3. 12.)

Further, from Equation 3, 12, it can be seen that

3:‘;1.‘ S %

i T

3.18
3qj 3 Qj

Putting these changes in 3. 17

- T fa e,
2 m_X (mpx i )-mok i 3.19
T r: 5 ik 8 —_— r . = .
i . an T, 1 ' 3Clj T 29;
Z 1 _& < 2 Z i. 1 > 2
s m x, (- Fm.x
i : T 99 i T, 1 aqj T %
Thus Equation 3. 14 can be written
!
-y d 2 1 < 2 <2
5 Z at Z O} e T _‘;\‘q.L%mrxr‘ da; at
i T, i 3 i ] .
t
3.20
5
Y
J
t
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If we identify Z% mr;;’rz- as the system kinetic energy, T, 3.20
can be written weah *
4 2% . 2% dt = 0 3,21
S E( dt aa; oa; QJ) & '
J J J
to

and since the § qj are arbitrary, we can conclude

d . 9% . 8T . @, §=1s % Bs s oy 30 3.22
; j
at  aq 0 9q;

Equation 3.22 is very general since we placed few restrictions on the
transformation equations which relate the x%.., and the qj- It was assumed im-
—— . s X 1
plicitly that the derivatives d*r; exist and that the transformation can be

0 4

inverted. Note that the Qj need not have the dimensions of force - from 3. 14

it can be seen that Q. § q. has the dimensions of work. If, for example, we
choose generalized coordinates which have the dimensions of work, then the

generalized forces will be dimensionless.

Equations 3.22 are sometimes referred to as Lagrange's equations.
Equations 3.21 are & generalized expression for 3.8, Hamilton's Principle,
in generalized coordinates. If a generalized potential exists such that

2U
= 3.23
] an
Then 3.22 can be written
d Q(T.'U) - ) (T-1) =0 . 3.24
dt ° qj BQj

We can write 3.24 in the form

dt afij 39

d _2L L _p 3.25

where LL = T = U.

Actually 3.23 is unnecessarily restrictive. As indicated by 3. 1, U
can be a function of 9; and E;_J.; if the generalized forces can be obtained from U

by the rule



&

L= - oU + £ Q.U 3.1
J an dt an

Q

U is then called a "velocity dependent potential, (Reference 1, Section 1-5).
This applies to the very important case of electromagnetic forces on moving
charges, as in magnetohydrodynamics, for example.

Equations 3.25 are 3n second order differential equations which de-
scribe the motion of the system of n particles. Usually, they are not integrable
in terms of known functions, but even when a complete solution can not be ob-
tained, it is usually possible to tell a great deal about the motion of the system.

For example, if the independent variable, t, does not appear explicitly
in the Lagrangian, L, then by Equation A.32, a first integral of the equations
of motion is furnished immediately.

. oL
Zj: 9 _—BEIJ - L = const. 3.26

This quantity will be identified shortly as the Hamiltonian, and 3,26
states that if U is a function of the q,only, the total energy is a constant of the
motion. 3.26 is an exceedingly valuable result, valid even for very complex
systems.

As another example, consider the case where the Lagrangian does not
depend explicitly on one of the coordinates, say q,., even though it may depend
on the corresponding velocity, qr. Then the Lagrange equation of motion,

d, oL . gL . 3.25
dt  34q, 39y
reduces to
a,L = const 3.27
o4a,.

24,
jugate or canonical momentum. The coordinate, q,., in this case is called a
cyclic coordinate, or an ignorable coordinate, and accordingly, 3.27 states
that the generalized momentum, conjugate to a cyclic coordinate, is conserved.

2L is called the generalized momentum conjugate to q,, or simply the con-

Hamilton's Equations

Lagrange's equations are 3n second order differential equations. Much
knowledge about the system is conveniently obtained by examination of an equiv-
alent System of 6n first order equations. These first order equations can be
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obtained by a "Legendre transformation” as follows: Consider a function of
two variables, f(x,y), then

2 2L d 3.28
=udx+vdy 3:.29

We wish to transform from the independent variables x, y to indepen-
dent variables u, y. Then our function f(x, y) will be transformed into some
new function g(u,y). If we let

g =f-ux 3.30
dg =df - udx - xdu 3.31
3,32

=vdy - xdu
which is in the desired form.

We will illustrate the procedure for the case of motion of a single
particle in two dimensions, x and y, then consider the general case.

In this case, the Lagrangian is

EeXife, o %o 3 B 3.33
L AL 2L .. QL . JL
=pdx+qdy+rdx+sdy+wdt 3. 35

We wish to transform from these five independent variables to the variables
X, y, T; 8, t, where

2L
3

r =

b4
i 3.36
5= —
ay
It is desired to express the equations of motion in terms of these new variables,
which will be recognized as the coordinates and canonical momenta conjugate

to the coordinates. (See 3.27) We define a new function, H.
H=rx+sy-L 3.3%

dH=rd% +xdr +sdy +yds - dL 3.38



and from 3. 35
dH =% dr + yds - pdx - gdy - wdt

Thus, H = H (r, s, %, Yy, t) as required and

A & . geaaie d ¢o0 dx Gatdy & T 9
ar Js B x oY ot

Comparing coefficients in 3.39 and 3,40

JH . IH

=X = >
ar g s 3,?
> 3
dH _ -p —— R
ax oy
BH _ g
ot
Remembering the definitions of p and q from 3. 34 and 3. 35,
-1 _ 2L 2t
P=ox 17 5y hEE:

From Lagrange's equations of motion, 3.25,

d oL _ 2L _,
dt 3x ax
d _pL _ 3L .,
dt 9y 2y

Putting 3. 36 and 3.43 into 3.41,

_L—HI’ gH :’

o * o s y

2 H 2 H .
= -7 = -5

J* Y

>H _ 9L

Jt ot

3.39

3.40

Equations 3.44 together with the definitions 3.36 and 3.37 are the canonical

equations of Hamilton for this case.

In general, our mechanics problems are to be formulatedusing as inde-
pendent variables the generalized coordinates, gj.,and the generalized momenta,
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4L .
o R b 3.45
= % 9 9y)

Thus we will define a new function, H (p, q, t)

H(p,q,t) = Z 4;p; - L (q;,4;,1t) 3.46
1

Equation 3.46 is, except for a minus sign, similar to equation 3, 30, where {
and L correspond, p; and u correspond, and x and q; correspond.

Considering H as a function of p;, q; and t we have

JH
P

dpi+z.£ dgy +—2E.gt 3.47
2 & 1 24q4 ot

1

but from 3.46 we have

dH:Z q; dp; + Z p; dq;
1 1

L oL go. . JL
dq; - dg; - dt 3.48
Z; 2q; t 79q 7 ot

Equating 3.47 and 3.48 and collecting coefficients of the differentials,

9H _ ¢ [oH 2L _
zcﬁ - qi) dp; + Z\;qi ! ;qu) 4
1

i

1L ) 3.49
QH QL s SN ®
+<3t T 3t ) dt _Z(Pi' Jd 4 dg; = 0

oL 2
94;

by definition of p;, (p; = ) the last term vanishes. By Lagrange's equations,

L d 3L
H ©odt 29;

= p; 3.50

Since the differentials dp; and dqg; are arbitrary, we can conclude that:

91—1:;1 9H _ 2L
AP % 2t at

3.51
o H

=% g
29; g
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Equations 3.51 are known as the canonical equations of Hamilton. They are bn
first order equations in the én variables, p;,q;, which are the equivalent of the
3n second order Lagrange equations. To obtam them, we

1) Set up the Lagrangian
L=T-U=L(Cl, é_r t)

2) Determine the conjugate momentum for each coordinate.
The momentum conjugate to the coordinate q; is defined as:

by = 2 3.45
2 9i
3) Using the momenta from (2) set up the Hamiltonian,
H=Zélipi—L 3.46
i
4) Using 3.46 in 3.51, the equations of motion follow.
Significance of the Hamiltonian
From equations 3.51 we have
dH J L
3t = T dt
H
2 =-p 3.51
JH A 99 %
— O q;
3 Pi '
but
dH dH - IJH . JH
= ay O T : Bl 3. 52
At Z;(m-l T 1) t
and from 3.51 above
dH n _— aH
at = (-P39; * Pi%) * .
dH _ 9H _ _ 9L
dt at at

Thus, if the Lagrangian does not contain the time explicitly, neither does the
Hamiltonian and in this case the Hamiltonian itself is a constant of the motion.

H= & 3.54
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If the transformation equations from rectangular to generalized coordinates
do not contain the time explicitly, i.e.

x; =f; (a7, .- q,)
e = ofy
s 29 4

then it is readily seen that the kinetic energy, T, is a homogeneous function of
the q; of degree 2.

A homogeneous function of degree n is one for which
f(hx], hx,) = h? f(x;, x;) 3.55

For such a function, Euler's theorem on homogeneous functions is

Z x 94 =n£{xi) 3.56

i 1 9%

af
This is easily seen by computing 33, then setting h = 1. Since the kinetic
energy is homogeneous of degree 2, in g;, then from 3.56

4, 2% =g 3.57
1 aqi

If the potential is not velocity dependent, U = U(qi), then

T L
o - - 3.58

39

Therefore

i = Z p;q; - L =2T - (T-U)
* 3.59

H=T+U=E

where E is the total energy. Thus, if the potential is not velocity dependent
and the transformation equations do not involve the time explicitly, then

H = E = const. 3.60

Energy is conserved.
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Example - Planetary Motion

From the figure, we see that the velocity components in the r, €, and
¢ directions are.

v_ =7~
r
v. = r 0 361
4]
v, =1 sin 6 ¢
g
We assume an attractive inverse - square central force field. For such a
k k _
force field, F = - —2~ and U = - " . (The negative sign is used for an
attractive force.) Then the Lagrangian is
m s . k
L=T-U=% (#2 + r28% + r2sin®e 3%y + 4 3,62

Lagrange's equations of motion are
g q

d
AL, 0B . 3.25
di @y 243
s . ’ k
m}-mrgz-mrsin2992+ 220
r
mrza-l—Zmrfé-mrz sichosQGiZ:O 3.63

mr2 sin2 0 ¢ = const.

Equations 3.63 will not be solved now since motion in the central
force field has already been studied by another method. Two results - whick
are obtained without even writing down the equations of motion - are of some
interest, however., First, since the independent variable, time, does not
occur in the Lagrangian, the Hamiltonian is a constant of the motion (Equa-
tions 3.54 and 3.59). Second, since the variable § does not appear in the
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Lagrangian, 0 is a cyclic coordinate and the momentum conjugate to @ is a
constant of the motion (Equation 3.27).

To continue the example, let us now follow the "recipe® and write
down the canonical equations of motion. The Hamiltonian, H, is given by

H= z q P; - L 3.46
where
2L
p: = - 3.45
94
L 0
L 2¢
pg = -—?5—5 =mr~0
L @
Pg = —%rzmr2 sin% 0 @ 3.64
= P% % P% N Pa
T m ;e mr?sin
z 5 pk 2 2
m P. " mr Pg + mr sin~0 Pg k 3. 65
2 mz z m2r4 2 mzrésin‘lg r
2 2 2
H = Pr Pg i Pg 3
Zm 2mr” Zmrzsinzg x
The equations of motion follow from
2H _ -
3 P; 4
3.51
°H _ .
dq; P
The six canonical equations of motion are:
Pr ;
—
m
Po .
=0 3.66
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P
g i @
mrzsinzﬂ
2
Py . Pj ko3
- 2 - r
mr3 mr3sin2’0 T
3.66
p%'cos 6 .
2 o3 - Pg
mr“sin”0
0= f)g
H
also aal‘. =0, H=const = & 1
2 2 2
P P
PO S . — _izcxl 3.67
Zm Zmrz Zmrzsinz‘g r

3.67 and the last of equations 3. 66 furnish us with two integrals of the equations
of motion which may be used to eliminate two of the variables, r, 0, 0, P.» Pg:

Pg-

The Hamilton-Jacobi Theory

The two integrals of the equations of motion given by 3. 67 and the
last of 3.66 were obtained immediately because of a coordinate missing from
the Hamiltonian. (Incidentally, time can be considered a coordinate - in this
case the corresponding canonical momentum is -H.) The fact that ¢ was
missing from the Hamiltonian was a peculiarity of the spherical coordinate
system. Had we used rectangular cartesian coordinates, for example, all
of the coordinates would have been present in the Hamiltonian (except time)
and none of the conjugate momenta would have been constant. This fact, that
by proper selection of the coordinates we can reduce the solution of the
canonical equations of motion to the trivial problem of integrating equations
of the form

p; =0 3.68

sets the goal of the Hamilton-Jacobi theory. We will try to find a coordinate
system in which all of the canonical equations are of the form 3.68.
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We will be interested in a transformation of coordinates from the

old variables, p;, q; to new variables P;, Q;. The equations of motion
should be canonical, i.e., Hamilton's Principle should hold when the motion

is described in terms of both the old coordinates and the new ones.

Hamilton's Principle is:

t

1 t
JS Ldt = 65

t

(Bowe- - 6) (Do -x)aneo a6

1 f1
o o to
— where the new Hamiltonian is denoted by K.
From 3.69, we cannot conclude that the two integrands are equal,

since 3.69 is only a statement about the variation of the two integrals. This
is analogous to a statement about differentials. If, for example, we know

that

dG = dF | ®. 70
we can only conclude that

G = F + const. 3.71

Thus, we could write 3.69 as

3 t)
JS(ZHCL-_-H) dt=5B (ZPidi—K) dt+G:| 3.72
£ b
If we write
tl s
E _
C - S S5 dt = F(t) - Fity) 4. 73
tO

where F is an arbitrary function, C is an arbitrary constant, then 3.72 or
3.69 can be written

|
‘S‘S(Zpi‘ii-H)dtzd'S( Piéi—K-I-%FE') dt = 0 3.74
t
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Thus

Zp.d.-H:ZP-éi-K-}-% 3.75

e ! it

The arbitrary function, F, is called the generating function of the transforma-
tion and could be a function of all of the variables

F =F(p;, a Py Qs t) 3.76

All of these variables, however, are not independent, since we must relate
the P. and Q; to the p;, q; through a set of transformation equations. Thus,
if there are n P. and n Q;, there are 2n equations of transformation relating

the new coordinates to the old.

1l

Q:

Using equations 3.77 we can eliminate any 2n of the variables from F and
write F in one of the four forms:

F=F;(q Qt)

F=Fz(q, P, t) 3.78
F =F3(p, q t)
F =Fy4 (P, Q, t)
Let us suppose that F is expressed as Fl (g, Q, t). Then from
3.75
" dF
pic'li—H=P£Qi—K+ 3t (a0, Q, t) 3.79
dF,
if we expand a0 Ve have
E=ZBF1'+Z—8F—16-+ﬂ 3. 80
dt o, at Eam e at '

Thus, equating coefficients of the gj and Q; in 3.79

Pi T "3q. 3.81
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8F1
=T an 3,81
IF |
K=H+

e
ot

We can - in principle at least - solve the first of these equations for the Q.
in terms of the p; a=d q;,

Qi = Qi (pi’ qi’ t) \

Then the second of equations 3.81, after substituting for the Q;, would furnish
the P; in terms of the pj and g and t. Thus, fixing the function F determines
the transformation equations. For this reason F is called the generating
function of the transformation.

For our immediate purposes, we wish to obtain a generating function
of the form

F =F, (g P, t)

Equations 3. 81 suggest that we can obtain a suitable function by means of the
Legendre transformation, 3 30. Accordingly, we define

F, {q, P, t)=F; (g, Q t)+ ZPi Q 3.82
: 1

2
consequenrtly,

Fila), Q 0 =F, (¢ P, t) - 2 PO 3. 83
1

Then equation 2.79 becomes

. ' d
Zpiqi-—H=P1.Oi-K+ dt {FZ—ZPIQJ 3,84

If we repeat the pro:ess of differentiating the collecting coefficients, we
obtain

o é'FZ
* 3C1-1
" 9F2
= 3,85
i aPl
JF
K= H+ 2
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In summary, given a function of the generalized coordinates and conjugate
momenta and possibly of the time, such that Hamilton’s Principle is satisfied
and therefore canonical equations of motion can be obtained:

98 . .5 3.51

= 4.
9P, b 293

If we wish to change variables from p;, g, to P., Q; we can select a function
F(q, P, t), for example, and let

JF,
Pi =
t 3g;
3.86
oF
O = =t
i 2P
The new Hamiltonian is defined by
F
K=H+ gt 3.87
The new equations of motion are canonical
£y
57, ©
i
3.88
QK = = P:
o Q; -

and Hamilton's Principle is satisfied using K as the new Hamiltonian and
P, Q. as the new momenta and coordinates.

Examples of canonical transformations (Ref: Goldstein, pp. 244,

258)
1) Let F =F, = Z q; Py
1

then from 3. 86

p; = Py
Qi =aq

This is an identity transformation, apparently useless - yet see Example 4.
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2) Let F =FZ = Z fi_(ql’ ceer 9 t) P,

_oF,
Qé = 9Pi = fi {qlg e 0n g qn! t)

The new coordinates do not involve the corjugate momenta, i.e., this is a
trarsformation of coordinates, called a point transformation.

3) Let F = F1 = Zl; qui

then ' aF

i = BQ'_I._ = _ql

This trarsformation simply interchanges the coordinates and momenta - what
we formerly called coordinates are now called momenta and vice versa. We
should, therefore, not attach any particular significance to the names
"coordinates' ard "conjugate momenta'., These are simply two traditional
designations for family I coordinates and family II coordinates which are
connected by the relation

2L
y 1

4) Infinitesimal Transformation. The identity transformation was:
F=Fp = Z q; ¥y
1
Now let

F:Fzzz q P; + €G (q;, P;)

i

where £ is an infinitesimal.
IF
_ A
pi = =P + 20
0 dq;

ple
P.-p:=dp: = -

¥y £ 2G
i oP; %4 *CIP,

1

&)
1
[

aG
Qi'qizd-Qi "_‘é api
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G

Since d Py is an infinitesimal, we can replace Pi by P; in ) P““i and the

error in qu will be of second order in E .

2G
6q,=¢ e, ‘4 By

to first order in € . Now let

G (q Pi) 2 G (9;, p;) = Hlq;, py)

and let € be a small time increment, £ =dt. Then

JH
H

d
§aq; =dt 2p: =g, dt

=h b

1

Thus, the Hamiltonian itself may be thought of as the generating function of
a transformation, which transforms the coordinates and momenta at time t
into the new coordinates and momenta at time t + dt. The motion is the con-
tinual time evolution of the canonical transformation generated by the Hamil-
tonian. Conversely, there must exist a canonical transformation of the
coordinates and momenta from any time to any other time., In particular,
there must exist a transformation from any time to the initial time to Thus
a transformation

q; =i (9:55 Pis B
100 e 3,89

P =P (qjo’ Pjo’ t)
exists. This transformation, which specifies coordinates and momenta in

terms of initial conditions and time is the description of the motion we seek.
This is the solution of the motion problem.

The new variables certainly will be constant in time if we require
that the transformed Hamiltonian be identically zero, since then

oK 2 3 K !
:Q.:O ——m— :_P.:O 3-90
SP]_ * QQI %

Note that even though only derivatives of K determine Qi and ‘Pi,
the statement K =0 implies much more than K = constant. For example,
suppose

G = xy
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then

2G
g x 26

The statement G = constant does not imply D x - 0, but merely 2_}:' dx +

. 26G .
= v QY X

2G dy = 0. Our statement K= 0 means that K is not a function of any of

thvl;’ that not onlyis dK =0 b talso-g-g;—-o ﬂc—-ﬂ
e ior Qi' so that not only 1s = u S?i =0, an .
Since K = H + gf‘ , K will be zero if F satisfies
JF
Ht+ 3¢ =0 3.91

for all values p, q, P, Q, t which occur. We will use F = Fz(q, P, t) and,
from 3. 86

2F
Equation 3. 91 becomes:
F oF
oF oF, 2
H(pi,qi,t)-i--—é—t—:}l "gqi-—,qi,;-t— 3¢ =0 3..93

Equation 3. 93 is known as the Hamilton-Jacobi equation. It is a
partial differential equation, of first order, inn + 1 variables. We should
then obtain n + 1 arbitrary constants of integration from its solution, The
function, F,, which satisfies 3. 93 is customarily called Hamilton's principal
function and is denoted by the letter S. Note that if S is a solution of 3. 93,
then S + const. also is a solution. Thus, one of the n + 1 constants of integra-
tion has no effect on the transformation, which involves only derivatives of
S. A complete solution of 3. 93 for our purposes can be written in the form

S=S(q1t'--: q, C[l;---,ctn, t) 3.94

where the O's are independent constants of integration and none of them is
simply an additive constant. Since the  's are arbitrary, independent con-
stants, we are free to let them be the new constant momenta, Pi’ so that S
is indeed of the proper form

S =5 (q, Pi

t) 3.95

After finding the principal function, S, we can find the transformation
equations

___..gs_-(qit “is t]
Pi = Qg 3.96

Qi": const. = ﬁi =9 1 1
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By setting t = t,, P; = Pijor 93 = i, in equations 3,96, the d:i and

ﬁi can be evaluated in terms of the initial conditions. Then the second of
equations 3.96 can be (in principle) solved for the g, in terms of the «a.,

. and t. These can then be put in the first of equations 3. 96, the final
result being:

P;

q (e, By t) 3.97

9

The problem is now solved, in principle. We have insisted on
hedging by constantly making statements which are true 'in principle". As
might be expected, much of the time practical difficulties arise in actually
carrying out the operations which are possible "in principle'. Nevertheless,
the method is very powerful, and often can be used as a systematic means
of solving variational problems other than the dynamics problems which we
consider here.

As a first example of the application of the Hamilton-Jacobi method,
consider the one-dimensional motion of a mass restrained by a spring.

i mx?
- 2 3.98
_ Kol
Feeke 5 W=7 3.99
02 2
_ _ mx”  kx :
1 =1 3 = 3.100
2L ;
P = 93{ = mx g=x E 3.101
_Z P m pz qu 0
8% 3 qul-L=(p)(m - 3 (mz.)+ > 3.102
2 2
. P kq
H= 2m Y 3.103
By o i ]
-l 3.104
__9d5Ss
P=35q 3. 105
2
3.106

3~
Feo e
-DIU)
—

e
S
(%]

+
QA
o n

1
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. S
Because the dependence on t appears only in the last term of 3. 106, Iy

must be at most a constant,

25 | '
= = Cx L]
3t 3.107
Then
S=W(q, )=t 3,108

3.106 becomes:

() +—3— o 3,109

W = mkS = -¢* dq 3.110

i -J—mES %‘i-qz dq - &t 3.111

a--55- 5 /zq—r
t+pB = 'i arc cos {ﬁ 3.113

Let
w:/_k_
m 3.114
q__,/ZkCI cos w(t+p3)

3. 112




CHAPTER IV - THE CANONIC CONSTANTS FOR THE ELLIPTIC ORBIT
Reference: Celestial Mechanics, Smart, Chapter 9.

The Hamilton-Jacobi theory developed in Chapter III will be applied to
the problem of motion in a central force field.

The position of a heavenly body is customarily specified by spherical
coordinates which are slightly modified from the spherical coordinates normally
used in analytic geometry.

Let the origin of coordinates be at the center of force of the central force
field. A reference plane is passed through the center of force. If the axes are
heliocentric, the reference plane usually will be the plane of the ecliptic, the
plane containing the earth's orbit about the sun. If the axes are geocentric, the
reference plane usually will be the plane of the equator, i.e. the plane through
the center of mass of the earth, normal to the earth's axis of rotation. The
reference direction in either case is the vernal equinox, 9®  This line is the
line of intersection of the equatorial and ecliptic planes. At one time this line
was in the direction of a star in the constellation Aries, the Ram, called the
First Point of Aries. Due to precession of the line of apsides of the earth's
orbit, the vernal equinox is now shifted and lies in the constellation Pisces.
However, it is a well defined direction and the symbol 9P denotes the vernal
equinox even though it is no longer in the Ram. We will specify the position
of the planet, or satellite, by the radius from the center of force, r; the
angular distance of the satellite from the reference plane measured in the plane
normal to the reference plane containing the body and the center of force, called
the latitude, L; and the angular distance of this normal plane from the vernal
equinox, measured in the reference plane, and called the (ecliptic or equatorial)
longitude, See Figure 4-1.

Pole

Satellite

Vernal /,fhpinox,ﬂ1

P
7

Figure 4-1
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If we align the x axis of a Cartesian coordinate system with the vernal equinox
and the z axis with the normal to the reference plane, then

x=r cos Acos L

y =1 sin Acos L 4.1

z =r s8in L

The kinetic energy is
T = i (3% + % + 22) 4.2
or from 4.1
. . : "2
T=2%m (rz + rzcosz_L AZ + rzL ) 4.3

the potential, U is (from 3.62)

The Lagrangian <£, ¢

/
s -2 k
a‘ﬁk:T-U:%m(iz.—frzcoszL ?\z+r2L)+—r— 4.5

In order to avoid carrying the constant m throughout the development,
let us divide 4.5 by m, or alternatively take m to be the unit of mass. Let

k
o S be the potential per unit mass.
r mr

’ : . .
fw=T-U=14% (i-z + rzcoszL ?\2 + rZLZ) + 4.5a
r
The conjugate momenta:

2F _

2r Pr = r

—z‘;\L =p?L =_r2c052Li\ 4.6
2L 2:
a]-_" =pL - &



The Ham:ltonian:

2 2
2 P P
T J o e | ) - A %
r“cos“L r r

25 —
Remembering that p, = —E- , the Hamilton-Jacobi equation is

5s 25 )? 1 /3s)\?, 1 [#s)° _
3t (ar) ' IZCD}LG,&) +:T(3L) sl =0 A

Since neither t nor fL appears explicitly in the Hamiltonian,

=

H = const = + &, _gf_=- , 4.9
9H : 2S
2E 0= _ _95 | « _
N P?\ p?\ const A 3 4.10

We, therefore, will try a solution of the Hamilton-Jacobi equation of the form:
S=- %t+ AgA +8'(r,L) 4.11

Substituting 4. 11 in 4. 8
2 2
2s' 1 2 1 a8s!
_ L - - ;& =0 4.12
Atz ( ) Y P2cos’L () +r2 (3L) r

ar
2 2 (8s)? as' ) ? di
2 &yr -~ (_ér_) +2 M = -:9—1:—) + —a. 4.13
The variables are here separated, so we try
St =84(r) + SZ(L) 4.14

Each side of 4. 13 must then be equal to a constant, which we will call C(i

as, )2 :
x B 1 2
2C(1r -r(ar) +2/a_r-<12_0 4.15

8s \2 24 2
2 3
+ - L =0 4,16
oL / cosZL




z 2. dr
s, - S /z @l pmre Ay 4,17
&
L
8, = S /di - Gilcozb dL 4.18
o

It appears that we have introduced a new constant into our solution,
namely r; in 4. 17. Therefore, this constant must be specified in terms of the
three independent constants O 1’ sz and C'»(3. We let T be the smaller of the
two roots, r; and T, of

2 2
2 CIl,r -I-Z/Qr— ﬂz—_.O 4.19

Then r; + r, =_ 4t

2
Cr1 - CIZ
I‘ll'z = Z—a—— 4.20
1
Therefore r; = r,(&, &) and no new constant has been introduced. The

coordinates of the satellite, ]i', f , L are determined from the transformation
equations:

s _ 8s _ s _
= P PRt O

aaL, B
Since

§=-0Gt+ og?\ +8;(r) +5,(L) 422

and C(3 does not appear in Sl, CII does not appear in SZ:

'asl

-t + _s_dj_: ﬁ]_
952
8s 2s
1 2

aa ¥ ZEY =



From equai:ions 4.17 and 4. 18, substituted into the first of 4.23:
I
1'2 dr

t+ﬁ1= S JZCXer-I-Z/qr-C‘g ¥

1 _ 4.24

Ir 1 : 2 A2
- aal l:r_ Vzoﬁlr -I-Z;Ar-t.'\z}

The last part of the expression on the right side of 4.23 vanishes by virtue of the
definition of r,

1‘-'-'1'1

r
1 r dr
t+ = \ 4,25
fiel=ze g (- ep o)
r
1

Where it will be recalled that r; is the smaller and T, the larger of the two
roots of '

dZ
24 AL o 2 .o 4,26
i | 2 CIl
Hence r lies between r; and r, and (r - r{)(r, - r) is a positive quantity. The

integral 4.24 vanishes when r = r;, therefore, t + pl =0 when r = Ty and

@1 = - T, where Tis the epoch, the time of passage of the point on the orbit
where r is minimum, the periapsis (perigee or perihelion).

We define two new constants, a and e, by:

r. =a(l-e)

i 4.27

Ty =a (lte)

Thus from 4.20

dlz_ 2 a
> 4.28
o =)fmua(l-e’)



If we now introduce the new variable E defined by

r =a (l-e cos E)
such that E = 0 when r = ry
T - 1.-1 = ae (l-cosE)

rz-r=ae.(l+cosE)

dr = sin E dE

Then 4.25 becomes:

E
_-\j-z C(l (t + (31}' =8 S (1-e cos E) dE
(o)

B - es_inE:";— \!"20:1 (t+ﬁ'1)

E-esinE=n(-7T)

which is Kepler's equation. See Equation 2.29.

following quantities:

6,=-t

& =~ g%

Ciz ‘f/ua (l-éz)

Now consider the integral

From 4.18 L
sec L dL
By = A~ Oy S\(a_qz :
2 ) Bec L
o
L
- S sec L dL
- = 4. g¢
o/‘i%_'zi - tanZL
a

4,29

4.30

4.31

4.32

4.33

Thus, we have identified the

4.34

4.35

4,36



. 2 2 :
In order for the denominator of 4.3< to be real, GZ)CIS. If we define a new

angle, ¢, by:

2 2 2 2
= = 4.
az (13 . C(S tan~ ¢ 37
and :requ.:.re that ¢ be a positive angle, then 4. 36 becomes
L 2t 4
(3 = % sec”L dL . 4.38
3 S/tanz o - tanZL
o

which integrates to

3 Lo=1 tan L
(33 = A - sin (—————tan 3 ) | 4.39

(See Dwight, Tables of Integrals and Other Mathematical Date, formulas 427. 3,
512. 1)

Recalling that x=r cos lcos L
y =r sin Acos L 4.1
z = r sin L

We rewrite 4,39 as:
tan L
sin (A -GB3) =n g 4.40

' sinL
rsin(f[-ﬁS)cosL=r :;nes =z cot @

z cot ¢ 4 .41

y cos B -xsin(33

4.41 is the equation of a plane through the center of force
ax¥tby+cz=0

Further, from 4.40 we see that when L = 0, i.e. when the satellite passes
through the reference plane,

A=, 4.42



Therefore, @3 is the longitude of the ascending node, Jb . Since the maximum

value of sin ( A - ﬁ3) is one, the maximum value of L is ¢. But the maximum
value of L for a particle which moves in a plane inclined to the reference plane
by an angle i, is the inclination angle, i. Thus

é::i | 4.43
Accordingly, from 4. 37

.

I

dz cos i 4. 44

or from 4. 34

Cii 1//(3 (1-e2) cos i 4.45

We have now identified

6= -%

Cil - —/q/2a'
o, =//.a (1-€%) 4. 46
- 4
3

0(3 l/q/ a (l-ez) cos i

We now turn to the final integral:

951 952
= 4.2
@ o " e 3
2 2 1
r
. _2_ 2  dr
@Z— 362 “/2 q1r2+2 r - 0(2 -
o SS9 )
1% % 4.47
L 5 CCZ
¢ 2 a4 - ———%r—— dL
ao& 2 cos“ L
o]



r

L

- 'dL dr '
G = % S ; ar % S rJZCllr2+2/l(r-C(2
) —_— 2

Tl

4.48

-[—I;—Jzotlrzu/ar-a% ag;f:l

I‘=I‘1

Again the final term of 4.48 is zero. Let ﬂZ =Ly - IZ

P
L dL
I = O(Z COZS 2 '
M- a, - & sin® L 4.49
(o]

L
cos L dL

1y = z
) S ,Jsinzi—sin L
o}

from 4.37. 4. 49 may now be integrated to obtain

- sin L,
i syl eme 4.50

1 sin 1

From the Law of Sines of spherical trigonometry, I is the angle from the node
to the satellite which we will call u, the argument of the latitude.

I, =u

L 4.51

) _ sin L
S e sin i

Turning now to the second integral in 4. 48,
r
L, = & = : 4.52
2 2 28.0% & 2 dz
r lr /‘tr =y

*1



(2 ¢

i
I = 2 . , dr ‘ 4.53
¢/ 2« rf(w-r )r,-7)
i

1
In terms of the eccentric anomaly,
E
L= = S e 4.54
2 1’ l-e cos E
o
1 - 2 :ZE dE
sec
L = 4.55
1- 1+ E
2 s A1) S 1+ = tan® %
e s @
If we let v be defined from
v ’1 +e E
tan — =fT-e tan — 4.56
then
]L2 =y 4. 57

Equations 4.56 and 4.57 will be more easily interpreted by recalling that for
motion in an elliptic orbit we had

2
o = (L ef) 4.58
l+e cosv
and
r=a(l+e cos E) 4,59
hence 2
(l1+e cos E)(l+tecosv)=1-e 4.60

which can also be written as:
v l+e E
tan —— = ,1[ T tan > 4.56

(1- ez)% sin v
4.61

or

sin E =
l+e cos v



Thus ;
ﬂ2=u-v=w 4,62

¢ is called the argument of periapsis, and is evidently the angle from the node
line to the periapsis.

Summary of the Canonic Constants

The canonic momenta and coordinates are:

c‘lz—:ﬁ_. (Slz_.f

. 2 -
a, = Jua (1-€%) B, = 4,63
d3 = [Aa (1-e?) cos i @3 =

The elements of the orbit in terms of the canonic constants are:

i -
o = zcntl T-'ﬁl
chld;;?'
e = 1+T— o= (32 4.64
A,

i=cos-1 — n=ﬁ3

Discussion of the Canonical Constants

We have already found that when the Hamiltonian itself does not contain
the time explicitly, then it is a2 constant of the motion. We have called that

= = - .

Note that from the form of U,

B 4.66
the zero level of potential energy is at r —» 00.

The third canonical constant, CIB, was given by equation 4.10 as

Pa = %y 4.10



But from 4. 6.

9L 2 P
= = o = cos L ?\ 4.6
o, =P ax ~F

rzcoszL N is the component of angular momentum per unit mass along the fixed
polar axis, normal to the reference plane, and from 4.6 is therefore conserved.

We write equation 4. 16 in the form

2
(o {
P+ —— = orz2 4.67
L cos L

Now in plane polar coordinates, the Hamiltonian per unit mass is:

2
H=%[Pz+ _Ei_}—?& et
r r

Comparison of 4. 68 with 4.7

2 2
2 FA Py,
i -
H=}(p +—F—=— + — A 4.7
r cos L r
2

shows that p‘?‘ must be identified with C(,. In 4.68, p  is the total angular

momentum of the particle about the center of force. Hence CIZ is the magnitude
of the total angular momentum, which is conserved. Note that the two state-
ments, (magnitude of angular momentum vector and component of angular

vector along the polar axis are both constant) are not redundant. In fact, in
order to specify that the angular momentum vector is constant requires the
third statement; the motion remains in a fixed plane ((33 =41 ).



" 'FOREWORD TO: APPENDIX B

Derivation of a complete set of equations of motion suitable for
machine solution is not a completely trivial matter. The equations presented
in the paper which i1s reproduced here as Appendix B have certaln advantages
with respect to computer scaling and accuracy. It is hoped that they will be
useful to users of these notes.



CHAPTER V

PERTURBATIONS

Analysis of the motion of a body in a central force field is
the basis of most of the knowledge which we have of planetary motion.
The detailed analysis of the motion inevitably must recognize that the
pure central force field is a mathematical idealization, and that the
motion of real bodies in the solar system is influenced by deviations
from the central force field. TFortunately, the deviation often is not
large. If this were not the case, we would know only a few solutions
of idealized equations of motion. Perturbation analysis is a method of
treating the motion as a deviation from the conic orbit which charac-
terizes the central force field with inverse-square variation.

Before making the perturbation analysis, let us examine a
simpler problem briefly, and illustrate the method. (Reference:
Celestial Mechanics, Moulton, 2nd Edition, Chapter Xl

Consider the solution of

% + kx = -uX3 + v cos 1t (5.1)

Rewriting the equation so that it is in the form of the canonical equa-
tions of motion, let

X =D

x =q (5:2)
Then 5.1 becomes

4-p=0

P+ kg = -up> + v cos 1t (5.3)

Considering - the left hand side of 5.1 to represent the undisturbed motion,
and the right hand side to represent the perturbing force, the equations
of the undisturbed motion are

a-p=0

pD+kg=0 (5.4)

5-1



5.2

(See pp. 64-66 where this problem was solved by the Hamilton-Jacobi
method ., )
The solution of 5.4 is the well-known harmonic motion:

g=acosJkt + Bsin(Et

p =k & sin Jk ¢ +Jgpcos Jk t

In our terminology, « and B are the elements of the orbit.

(5.5)

Let us forget, for the moment, that 5.5 are the solutions of
5.4 and consider 5.5 merely as a set of transformation equations, from
the old variables, p and gq to new variables o and PB. We now wish
to find o(t) and B(t) to satisfy 5.3. Substituting 5.5 in 5.3 and
remembering that o and B are now functions of time, we have:

0

(cos JE t)& + (sin% t)p
(-sinyK t)& + (cos Jk t)B-
+ 2 cos 1t (5.6)

&

These equations can be solved for o and é:

Il

uk[o sindk t - B cos|k t]3

o = - uk [ sinJi t - B cos |k t]3 sin{k + —{§ cos 1t sinfkt
(5.7)
é = pk[o sin{kt] - B eos,jft]3 cosJkt]+ 2 cos 1t cosjit]
B (5.8)

5.7 and 5.8 are just as valid as 5.3, since no approximation was made
in deriving them--we have merely changed variables. Recall that if y
and v are zero, the solution of 5.7 and 5.8 is & =0, f =0 and

the solution of 5.3 becomes just the transformation Equations(5.5) with
Q@ and P constant. It is by no means a coincidence that this reminds
us strongly of the Hamilton-Jacobi theory.

Equations 5.7 and 5.8 are at least as difficult to solve
analytically as 5.1 or 5.3. But suppose that p and v are small,
so that the forces represented by the right hand side of 5.1 are small
perturbing forces when compared with the individual terms on the left-
hand side. Then for a short period of time we can consider ¢ and B
to be constants in the right-hand side of 5.7 and 5.8, which therefore
can be integrated to give «(t) and p(t). (The solution is given in
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Moulton.,) . The result is of the form

6

£, B, t) ( )
5.9

p =gla, g, t)
Thus as o and £ change slowly with time, they also change f and
g +which must be continually changed as the error builds up.

The example which has just been cited is an example of the
general method known as the method of "variation of arbitrary con-
stants"-~-somewhat unfortunately. The essence of the method is to seek
a transformation of variables such that the new variables will change
very slowly with time, and therefore numerical integration methods can
be applied, with the approximation being reasonably valid across a wide
time interval.

One obvious application of the method is to the central force
problem with the addition of a set of forces which slightly perturb the
central force field. For example, if we are concerned with the motion
of a body in a nearly inverse-square central force field due to the
closest or largest attracting body together with a slight perturbing
force due to a distant or small body, we should expect that the motion
will differ not too greatly from the pure conic. Such a solution could
be written in terms of the elements of the conic, but now we expect the
elements to change (slowly) with time.

Our first task will be to write the equations of motion in
terms of the new variables, 04 and ﬁi' We have already accomplished
this, (in principle) since thie was just the object of the Hamilton-
Jacobi theory.

It will be recalled that the transformation equations:

Pi = %ﬁ_ . ,
% | (5.10)
_ 98
Py = aai

were a set of equations which related the old wvariasbles Pys 9y

(Pr’ P Pl’ ry Ay L) to new variables P_, Q45 (al’ Cys 33) 519 32: ﬁ3)-
The new variables 4, B; are the canonic constants (whith are related
to the elements of the orbit). The elements of the orbit are constants



5.

for the Keﬁler problem. When there is an additional perturbation of
the force field, we will expect these 'constants" to change slowly with
time.

The transformation Equation (5.10) can be applied even if the

. and Bi are not constants. We said that these quantities must be

i
constant if the transformed Hamiltonian, K, were zero, since
. oK
[0 = - =
1 361
(5.11)
o _ oK
By = 3
whereK=H+a_s= 5
; ot
Now suppose that K is not zero:
K=K +K (5.12)
where
oS
K, =H+ Tl 0 (5.13)
K, = -R(a, B, t) (5.14)
We select the function R to be the perturbation force function.
K
B=-=-R (5.15)
r
The gradient of R is the perturbing force. Then
K=K +K =E+8 _R (5.16)
ot
 K=-R | (5.17)

The canonical equations of motion in terms of the new varisbles
Qs 5 Bi are:

1
& = - 9K _OR
; = _
%ok (5.18)
3 _ R
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We have thus derived & set of Equations (5.18) for the time rate of .-
change of the canonic "constants," and since R is & small quantity.
we expect the canonic constants to change slowly.

While the problem appears to be solved very neatly, there
are a number of practical hookers which can generate serious problems
when the method is applied. The first practical problem is that of 3 )
determining the force function, R, and expressing it in terms of the -
canonic varigbles or the elements of the osculating orbit. (The
osculating orbit is the orbit the body would describe 1f all perturbing _
forces were removed at any given time. The elements of this orbit there- '
fore change with time and are equal at any time to the elements which
would be determined by Equations £.18.) Moulton devotes Chapters IX
and X to determination of R and integration of Equations §.18 or
their equivalent. Smart also devotes several chapters to these problems.
Because of the lengthy algebraic manipulations, we will present here only
a portion of the results and refer the reader to the books by Moulton,
Smart and to Brown's "Lunar Theory.'

Equations of Motion in Terms of the Elements
of the Osculating Ellipse

Because of custom, it is usual to use the equations of motion
in terms of the elements of the orbit, rather than in terms of the canonic
constents as indicated by 5.18.

If we denote any element of the orbit by am(m =1, 2,...6)
then: 3 '

. Oa,
a'm = <ar r aﬁ E’r> (5-19)
r._
’ da, O o
8y oK 8 OK
= - + .20
R \5-20)
=t
6.
o x Y ]
oty 3 ool
S=1
o) - s} ) |
K _\ K _ dag |
oK _ 2
y Z e (s.21)
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The operations indicated by 5.20 and 5.21 are lengthy but not difficult
and are carried out, for example, in Moulton.

It should be noted that the equations of motion which result
from 5.18, 5.19, 5.20, and 5.21 are completely rigorous. No approxima-
tion has been made in deriving them. The equations are:

ag ' 1 SR
dat na?‘ll—e2 sini o1

ai _ cot 1 OR 1 R ]
dt na“ Jifeé- dw cosi 39
dw _ yl-e© OR cot i OR (5.22)
dt nae Ode naEQI-eE oi
dt na oX
2
e | 1® m_[LEw
dt nace OX nale W ~
ax _ . 1 "1-e2 9R ; 25 OR
dt EEE e Jde Jda
where:
¥ = -nT (5-23)
s 8ol (5.24)

n is the mean motion and + 1s the epoch, the time of perigee passage.

In order to obtain a solution of the above equations, one must
be able to express the perturbation potential, R, in terms of the elements
of the orbit. This may be difficult or even impossible. For numerical
treatment, using a step-by-step integration process, it is convenient to
express the perturbation acceleration in terms of components.

We resolve the perturbing acceleration into components W,
S, R where W is the component of acceleration perpendicular to the plane
of the orbit, positive toward the north pole; S is the component in the
plane of the orbit at right angles to the radius vector, positive in the
direction of motion; R is the component along the radius vector, positive



>=T

in the positive r direction. (Note that we use R to represent both
the perturbation potential and the radial component of acceleration.
This unfortunate choice of symbols is fairly standard.)

In terms of W, S. R the equations of motion are: (See Moulton,
for example)

aq r sin u

dt na<ll-e“ sini

gi — r cos u W
dt naE;]l—eE

j 2
a8 J1-% cos v R + ‘E:E— (L% % ) sin v S

dt nae nae

r sin u coti

e b (5.25)

na -e
de _ \]. 1-e§m5in ¥R di-e? a2(l-e22 -r| s
dat n a na<e r
da _ 2 e sin v R + 2&11-92 g
at ~  n(l-e° nr

2

ax - 1 [23 - A28 cos v] R
dt na a e

. (1-e%) [1 + E] sin v S
nae P

Because of the many different possible combinations of elliptic elements,

there are approximately as many different forms of 5.25 as there are authors

writing about them. A number of these are given in Moulton, Smart and

"Space Flight" by Krafft Ehricke. Several of them are of sufficient interest

and utility that we will reproduce them here.

It is sometimes convenient to have the perturbation potential
expressed in terms of T, N and W, where T is the component in the direction
of motion, N is normal to T, positive toward the interior of the ellipse.
The equations are given completely by Ehricke, but we are particularly in-
terested in the case where N = W = 0, T being either a force of resistance,
such as drag, or a tangential propulsive force. TFor this case:
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.c—-i.g:f]

dt

E:O
dt

gg - 2 l—e2 sin v T
dat nae 1 4 B +2e cos V

da .41+ez+ae Cos Vv

g5

at m1l-e= * (526
de _ EJl—ee (cos v +e) T

dt na \1+e“+2e cos v

dax _ E(l—ee)(l+e2+22cos v) sin v

dt h-_nae(l+e cos v)dl+e?§e cos Vv

When the right-hand side of Equations 5.25 or 5.26 does
not depend explicitly on time, we can express the equations in terms of
one of the angle varisbles, v or u. The equations are then particularly
useful for numerical work. We will briefly review a Russian study of the
lifetime of an artificial satellite, using u as the independent variable,
however, let us first examine Equations 5.25 which furnish a consider-
able amount of qualitative information about trajectories and maneuvers.

First we note that the longitude of the node, Q, and the in-
clination, i, can be changed only by application of a normal component,
W. If the problem is to change from one orbit plane to another, we take
the reference plane to be the plane of the target orbit. Then W will
change the interceptor plane inclination most effectively when 1r cos u
1s maximum, near the node line for small e, We should select the ascend-
ing or descending node according to the value of r.

For small eccentricity, e, the component S 1s more effective
than R in changing the semi-msjor axis, &a, Wwhich determines the orbit
energy level,

There are a great number of conclusions which can be drawn
from inspection of the equations of motion in terms of the elements of
the osculating ellipse (the ellipse which the body would follow if all
perturbing forces ceased). It should be emphasized again that these
equations are exact--no approximation was made in deriving them. A word
of caution--when e = 0, the elements w and =+, and therefore v are
undefined.
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EXAMPLE: THE LIFETIME OF AN ARTIFICIAL EARTH SATELLITE
[

Reference: 'Determining the Lifetime of an Artificial Earth Satellite
and an Investigation of Secular Perturbations of its Orbit," by
D. Ye. Ohhotsimskey, T. M. Eneyev and G. P. Taratynova. Transla-
tion in Vol. VI, Annals of the IGY.

The following is presented as an application of the method
of variation of elements. Because this work was completed several years
ago, the data used are now obsolete and therefore the results are not
numerically accurate. Those concerned with problems of this type should
make a careful survey of the current literature on the subject. The
starting point for this investigation was the equations of motion in the
following form:

Q:E. = 21’\5 S
dat M
E=Lp—(sinv)R+~‘-{—§(l+£cosv+.e£)S
dt M ’yM e P
dwo ___Ip 15 r
== = = e,
= e (cos V)R+m(l+p) sin v 8 (5.27)
- Jil—cot isinulW
[yM
@ _ B rsinu
dt M psin i
di P T
== =3 = cosuW
dt M
aT »2
— = — |- (cos v - e(sin v)N) R + 2 N8
dt eyM r
where the symbols have their usual meaning and
U=+ r= —Lt (5.28)

T 1 + ecos Vv

o
2
N = E%_ }p cos v dv ' (5.29)
0

(1 + ecos v)3



and v 1is related to t by

3/2
-2
IR jr (1L + ecos v)2 (5.30)

¥ 1is the gravitational constant, and M is the mass of the earth. Note
that e in the expression for N and t - r is a function of time. If
the right-hand sides of 5.27 do not depend explicitly on time it is con-
venient to change independent variables, introducing the argument of the
latitude, wu, as independent variable.

It can be shown geometrically that

%%l. =r'r;2 3 -@é cot i(sin u)W) (B.31)

Using 5.31, we can transform 5.27 to be:

ap _ 2 r3 8

du ¥y M

de rzcx r

== —= (sin v*R + cos v(l+£)S+e-S"

du rM | P P

day reoz r

- v }—Mg ’V_cos v 'R+ sin v(1 + 5) S - e % coti sin u W:| (5.32)

dan r3ce gin u
l

—_— = — W
dt yMp SR
ai __ E?_C_X cceg u W
du rMp
where
B
Q= (5.33)
1 -5 coti sinu-W
7V

The equation for 1 is not used and is not presented. It is pointed out
by the authors that Bquations 5.32 are also valid if we simply write v
as the independent variable and define & differently:

a = . S (5.34)

r . r< r
L + v cos veS - }ﬁel + 5sir:L veT
7
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Generally, the equations using wu as the variable, rather than v, are
more useful since for very low eccentricities v 1is hard to define.

If we ngglect the rotation of the atmosphere with the earth,
and assume that the earth's gravitational field is a central-force field,
Equations 5.32 reduce to:

g_;_:_ 21'3

= — 5

du oM

2
de _ I_[sinv-R+cosv(l+£)S+e£S}

du M L D P
. .
d_{_l) = E_._ I
o e [cos v'R + sin v(1 + = }S:| (5.35)
QQ = 0
du
a _ o
du

The aerodynamic drag of the body is

I .-
D=z pV ACH

where p is the density, V the total velocity, A the areas on which
the drag coefficient, Cp, 1is based. Then the tangential acceleration,
T is

T=-2 (5.36)
m
and the components R and S are
CLA
R = - _._ EE VI‘
m 2

(5.37)

A
S=C_D_P_Vv
m 2 A

where V,, and V_ are the velocity components along and normel to the

radius vector.
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Using the following formulae:

e B
.1 +ecosV

Jl.ﬂ—dl+2ecosv+e2

P

Vr_ =‘—Pm e sin v (5.38)
v =!—Z——M (1 + e cos v)

& P

(Problem: prove 5.36.)

=
I

We obtain

-CpA -
a =(—'—'— (D)'—E—— J1+1’2e.cos~‘.r+e"e
du \ m 1l 4+ e cos v

de _ (-CDA p(e + cos v) 5 4 Hach g
du ( m)(p) (1 + e cos v)2 \l RIEER Wt (5.39)

\ll+2ecosv+e2

dw (-CDA]( p sin v

du m/ 2e(1l + e cos V)

Equations 5.39 could be integrated, but, since satellite lifetime may
be measured in years, (or centuries) an enormous asmount of machine time
and a considersble accumulsted error could result. Instead, the authors
followed the scheme given below.

Integrating 5.39 from 22 to 2n

A :
Ap = - < C)% f ¢ (py &, W, u) du
Q

2n
CnhA
D
Ae = - pp — f v (p, e, w, u) du (5.40)
mn %
CpA pon
& = = py = X (p, e, w, u) du
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where Ap, Ae, and A are the changes in the semi-latus rectum,
eccentricity and argument of perigee in one revolution. In calculating
these integrals, p, e, and w are considered constant on the right-hand
side of 5.40,

Py (1 + e cos v)2

g ; p 1> {1+ 2e cos v +e?

¥ = & g Jl + 2e cos v + e~

(e + cos V) (5.41)

|
is]
|_|
r_l
+
(4]
(]
o}
{11}
3
Mo

_p_ P sin J1 + 2e cos vie©

Py 2e(1 + e cos v)2

and vV =u - W, p/pl is a function of r and p. 1is the density at
i 1
a reference altitude.

Under the assumption that p, e, and w are constant, the last
integral of 5.L40 vanishes:

=0

For small eccentricities, this appears to be very gquestionable. However,
only the change of p is significant in determining the lifetime, and
from the first of Equations 5.35, it is seen that p depends on w only
through r and the effect on 5. As long as W ig considerably less
than the angular velocity of the body in orbit,d%he location of perigee
should be unimportant for an integral over a full revolution. The change
of w will be considered to have negligible effect on the life of the
satellite.

Assuming that the changes of p and e are small during a
single revolution, we then can write:

27
?j ('P,E,u) du

dn m

ap _  Cphe1 jF

e}

(5.42)

O Ag 2n

d, DF1

e- TS kjp ¥ (p,e,u) du
0
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Assuming o = mo = const.
) CpA : )
If we let v = N —, Equations (5.42) can be written
m

21

%_e_ - !0 T du ; E‘E s 1 (5.11-3)
P T dp an
I ¢ Gy Py Q’ du

Given the law of variation of density with altitude, 5.43 can be inte-
grated by machine for various initial values of p and e, or of perigee
altitude, h,, and apogee altitude, ha' The authors chose to assign
initial values of h and ha' Since each point on an integral curve
could be considered as the initial point of some other motion, there was
no necessity to vary both h, and h_ . The equations were integrated
for hy = 1600 km and a range of h, ° from 160 km to 500 km, It was
assumed®that when the satellite perige8 reached 100 km the remaining life
would be negligible.

One of the important features of this method is that Equations
5.43 are independent of the structural parameters of the satellite (the
drag coefficient, mass, frontal area, etc.).

The authors present plots and tables from which one can im-
mediately determine © for any given initial height of perigee and apogee.
From the value of v, one then determines

CpA
o/22=

m

N =
and then can determine the approximate lifetime by multiplying N by an
average period--90 to 100 minutes, or by numerical integration,

i j{: (no. of revolutions)(time per revolution)

The tables and charts presented by the authors sppear to be in very useful
form, but probably should be recomputed using the latest atmospheric data.

Since this phase of the investigatidn neglected the effects of

oblateness of the earth and of the rotation of the atmosphere, the results
are only approximate.

Effects of the Oblate Earth

If the earth were a homegeneous sphere, the ﬁotential U would

be
U=-%X
xr
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Because the earth is flattened at the poles, this expression must be
modified. A commonly used expression for the potential of the oblate
ear th (see Ehricke, Space Flight, pages 156, 157):

Us=®Ma E (3 gin® 1-1) (5.4%)
r 3r3
where
a 2 - B
e =y Mrs (o E)
2
B=w, 2/&

L 1s the latitude, Ty is the equatorial radius of the earth, W is
the angular velocity of the earth's daily rotation, «a 1is the ellipticity
of the earth and 8o ie the measured acceleration of gravity at the
equator. (The basic expression was given by Clairuat in 1743 according

to K. Ehricke, p. 156) The "ellipticity" a is given by

a-b 1

x =

a 207

(5.15)
o- Br.1.6485 x 1073
>

The projections of the perturbing acceleration due to the
earth's oblateness are obtained from 5.4k,

R =5 (3 sin® i sin®u - 1]
I3
S = -EE[sin2 i sin 2u] (5.46)
g
We -8 e
g [ein 21 sin u]

When these expressions are substituted in 5.32 which then
may be integrated for a single revolution, it is found that only the
longitude of the node, §, and the argument of perigee, w, are per-
turbed secularly. The authors give:

2ne

e cogli
r M

(5.47)

2
S — cos i-1
r M (5 )

u;‘b" & o ;‘l , - 1 . o cloae i o {,"- “r e 'I-’.f-i-i il AW
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rave is not defined, but probably it is close to the mean distance, or
semi-major axis.

Effect of Rotation of the Atmosphere on the Elements of the Orbit

Since the satellite velocity is large compared with the linear
velocity due to earth rotation, the drag forces can be expanded in powers
WY
of _€  to obtain:
- ;

Riw— =-2¥ W, r cosi
m 2y TP
CpA , V2 + V2
s 2 2 5 we r cosi (5.48)
m 2 v
CpA
Woemel 2 Y pr @_ sin i cos u
m 2 g

Substituting these expressions for R, S, and W, assuming a variation of
p with altitude and following the procedure described earlier results
in expressions for the rates of change of each of the orbital elements.
(The expressions are not given here because they involve an integral
which is not tabulated.)

The results indicate that the lifetime of a satellite moving
toward the east will be greater than that of one moving toward the west,
with the difference amounting to as much as 10-12% for an equatorial
orbit. The effect on the semi-latus rectum is proportional to cos 1i.

Note: The effects of the rotating atmosphere are studied in
some detail, using the equations in terms of the orbital elements, by
T. E. Sterne, "Effect of the Rotation of a Planetary Atmosphere upon
the Orbit of a Close Satellite," ARS JOURNAL, October, 1959.



APPENDIX A

Mathematical Background:
Calculus of Variations

References:

(a) Differential and Integral Caleulus, by R. Courant, Vol. II,
Nordeman Publishing Company, New York, 1945.

(b)  An Introduction to the Calculus of Variations, by Charles
Fox, Oxford University Press, 1954.

(c) Methods of Mathematical Physics, Courant-Hilbert, Vol. I,

Interscience.

The usuel condition that a function of n varisbles, f(x;...x,) have a
stationary value is stated as;

af = 0
or grad £ = 0
or Aif/dxy = 0 A2

The calculus of variations is concerned with investigating extreme—or,
more generally, stationary—properties of a function. However, we are in
this case presented with & "function of a function," and it is necessary to
develop new methods for investigeting the stationary properties. Our pro-
cedure will be analogous to the procedure by which Equations 1.1 are ob-
tained.

Attention to problems of the variastional type was called by Bernoulli
in 1696 who stated the "BRACHISTOCHRONE" problem (shortest time problem)as
follows: '

In a vertical xy plane, a point A is to be joined to & point B which is
lover (but not directly below) then A by a smooth curve y = u(x) in such a
way that a frictionless particle will slide from A to B along y in the
shortest possible time.

Since there is no friction,



= mv® + mgh = const

v = «-2gh
ILet us take y = =<h
v = Nagy
Since
h'S = E = EE.E
dt dx dt
T *B
T = h/‘ at = k/ﬂ 1
0 X, ¥
also
ds® = dx2 + dy®
and
2
Qi = 1l+ QX
dx dx
Finally

T = L X:B M ax
'«/2—8 'xA v J

A.2

A4

A.5

A.6

A.8

vhere we have written y' for dy/dx. Now let us state the brachistochrone

problem as:

Arwong all curves y = ¢(x) which are continuously differentiable and which
pass through the points (xy, 0) end (xp, yg) find thet particular y(x) for

which the integral

I = L1 U/“xB S L
JEE Xp J

A-2



will have the least possible value.

This is the problem that started it all. It is an example of the simplest
kind of problem of the calculus of variations. Note the essential difference
between this problem and the ordinary maximum-minimum problem. Here the
value of the integral, I, depends on the behavior of y throughout the entire
interval of x. The value of I cannot be specified by specifying a finite num-
ber of variables, but rather must be specified by prescribing a ¢ontinuous
function. I is called a functional, or a function of a function.

Problems of this type are of great importance in trajectory analysis.
For example, consider an obviously important problem:

How should the attitude of a given booster be programmed in order to
boost a satellite to a specified oribital altitude with maximum horizontal
component of velocity?

Apparently, the horizontal velocity attained will depend on the entire
attitude history, or program, during powered flight.

Some of these problems are treated in Chapter VII wherein some of the
methods of the calculus of variations are applied.

Consider the following general problem:
Among ell twice differentiasble curves, y = #(x) find the particular #(x)

which passes through the points (x5, ¥o) and (X3, y1) and which causes the
integral

X3
I{g} = f F(x,y, —%) ax A.9
X.o

to assume a stationary wvalue.
(The requirement for continuous derivatives will be examined later,)
Qur procedure in finding that g(x) which satisfies the requirements is
analogous to the procedure for finding the extreme value of a function. We

assume that g = u(x) is the particular curve desired. Then any other curve
which is admissible, for example

g = u(x) + en(x) A.10
must cause I to move from the extreme value but if I is expended in powers

of €, the first degree term must vanish. For example, if u is the admissible

A=3



function which minimizes I, then u + en will cause I to increase, and the
charge of I will be at most proportional to €+ Here € is a constant and 'n,(x)
is & function with continuous first and second derivations which vanishes

at X5 and Xj.

(%) = n(m) = o a1

(le y.l)

X
We have
y = $(%) = u+ en(x)
g'_i = y' = ¢' = us+ en'(x) A.12
and
X3 X1
I = f F(x,y,y')dx = f F(x, u + en, u' + en')dx
X0 Xo
This integral is a function of €
X1 :
Vv(ie) = I = f F(x, u + €7, u' + en')dx A.13

X5



Now we can state in more familiar terms the condition that u(x) is the
function which causes I to be stationary. Clearly if this be true then

W

= 0 at € = O A.1b
de
ay
Remembering that y = uten, we compute Eﬂ as
: €
a a 2
LS A d_ F(x,y,y') ax
de £ W

]

X1 ;
Fay, ¥ &y g
Oy de  Jy' de

X3
ay '
=L = F.+ n'F_,) dx A2
- l (ﬂy Ui yr 5
o}
where we have written
OF(%,¥,¥") = F_ etec.
¥y
oy

and the conditions on the functions u and n assure that it is permissible to
interchange the order of integration and differentiation,

X1
= Ll; (nFy.+ ﬂ'FyT) dx

+1
=I (TjFu+n'Fu.) dx = © A.16
-0

ilib'l
o <

ay

de

e=0

Equation A.16 expresses the condition that y = u(x) causes I to bhe
stationary. Equation A.16 can be put in more conveniernt form if we integrate
the last half of the expressioﬁ?parts.

¥1
1 =,
“L N'F,dx = qF,

IX X
X i ) d -
= i '_V,. St dx A.lT




Since we required (A.ll) that

(%) = n(xa) = 0 A.11
X1 X1
JF‘ N'Fyr dx = -Jf n & B ax A.18
E%6) B%)
X1
ﬂ i ="f ‘I’](Fu —%Fur) dx =: 0 A'lg
dele=0 X

Now the function n(x) is arbitrary, and therefore

F_ -

v %; F = 0 wheny = u(x) A.20

y.|

Equation A.20 follows from_ the fact tlmt n(x) is arbitrary, in the fol-
lowing way; Suppose that Fy - %E Fyr % 0; for example, suppose it is positive
in the interwval

Xz < X < Xg.

Then, since n(x) is arbitrary, we can choose 7(X) = 0 Xg < X € Xg and
also in x4 € X K X;, but let n(x) be positive in x5 < x < x4. Then the
integrand in A.l9 is zero everywhere in the interval of integration except
in xg < x < %, and it is positive throughout this interval. Therefore the
integral of A.19 is positive, which wviolates A.19. ard so A,20 must be frue.

Equation A.20 is known as Euler's equation, discovered by him in 1T7hik.
Written out in full:

= Fy - Fy1yry" - Fyyry' = nyi = 0 A.20

Euler's equation is an ordinary differentiasl equation of second order. The
solutions are called extremsls of the variational problem. The particular
extremal (if any) which satisfies the boundary conditions is the desired
solution of the variational problem. Note that, since A.20 is a second
order equation, two arbitrary constants of integration are available for
satisfying boundary conditions.
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Example:

X1 _
f L+ Yy  ax A.8
Fuler's equation:

=) ©, @@’ LIEB e ™ @)= o

The solutions of this equation are the brachistochrones. In this case, how-
ever, the Euler equation can be simplified directly. Note that the explicit
dependence on x is missing. When this is true,

%; (y'Fy, -F) = 0 : A.21
 and
:f"_F‘y. - F = const A.22
(Since:
d— 1 " 1 d n 1
ax (F'Fyr = F) = y"Fyp + y' gz Fyr - Fyry" - Fyy

l'd- 1
= ¥ =T, -y Fy

dx
= y'(EEFp -Fy) = 0
o B o
implies y‘Fy. -F = const)

The Euler equation for the brachistochrone problem can be written:

1—+L|2- J—E'- 6‘/41-1-,?'9 = const
J

¥

A-T



const

= const A.25

]
1
Q-

Ny(1 + y'8)
Let y = 1/2 ¢ (1 - cos t) A.2L

from A.23, y' = _[>"X = cot (t/2)

A.25

»
%
&
%
o
&

X = — (t - sin t) + const A.26
= — (1 - cos t) A.2)

X and y are given as functions of the parsmeter, t. The brachistochrones
are cycloids described by points on the circumference of a circle of rad.ius
C®/2 which rolls on the x axis.
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Generalizations of the Simple Variational Problem.
1l. Integrals with more than one argument function.

Our first problem concerned the case where

_ 5,
I{g) = kj“ F(x,y,y') dx A.9
Xo

y = $(x)

and we were to find the single function of x, y = u(x) which caused I to
assume a stationary value.

Now suppose that there are a number of unknovn functions, yj = §i(x),
to be determined. That is, let F(X,¥y1,¥2;:+¥ns yi..-yﬁ) be a function of
the 2n + 1 arguments, X, @1...@,, @14, which is contimuous and has continuous
first and second derivatives at least. BSince the yy = di(x) are all functions
of the single variable x, F is a function of the single independent variable,
X, and

X1
I{f1.+e8n) = Jf F dx A.25
Xo

is a definite number; the number depending on the choice of the functions

$i- Our problem will be to find the particular set of n functioms, yj = uj(x)
which causes the integral I to assume a stationary value. To show that I

has reached a stationary value, we must compare the number, I, obtained by
setting y; = ui(x] with the number obtained by setting y; = ﬁi(x) where uj (x)
is the set of functions which satisfies our problem and the ﬁi(x)~are all
other functions which have the appropriate continuity properties and which
satisfy the boundary conditions:

¢i(xo) = A -
gy (x,) B, | A.26

1

Our procedure in this case is very similar to the procedure used in obtaining
Euler's equamion.for the simplest problem.

We teke yy = uj(x) to be the particular set of functions which satisfies
our problem. We then imbed .this set of functions in a one-parameter family

A-9



of functions depending on a single parameter, €, as follows: '

Let na(x)e..n, (x) be n arbitrary functions of x with continuous first
and second derivatives, which vanish at x = X, and x = X3

cny(xy) = ng(x) = 0 | A.27
Then consider

: X1
¥(e) = f F(X, 1 + €Nyeeouy + €N, u1 + €m
Xo

-ee ug + en)) dx A.28

A necessary condition that I be statlonary when y; = ui(x), (thaet is, when
e = 0), is that

ay

= 0 A.29
de -

€=0

This must be true no matter how the functiond ni(x) are chosen. We are at
liberty, for example, to choose

M2 = fg see = Ny = 0
Then
X1
.@.‘E.—.f ne 4 ona EN ax , A.30
de %5 dya dy1

and this implies, with A.29 above,

OF _4 OF _ o A.31
3y, dx dyy

A similer result, of course, holds for each of the n functions and the fol-
lowing thecrem may be stated: (Reference a. p. 508).

A-10



"A necessary and sufficient condition that the integral I{uj...u,)} may
be stationary is. that the n functions ui(x) shall satisfy the system of
Buler's equation

Fu = O (i = l, 2 ) n)-"

This is a system of n second order differential equations for the n functims
uj(x). All solutions of the system of equations are called "extremals" of
the variation problem.

If F does not contain the independent variable, x, explicitly, a first
integral of the system of Euler equations is given by

F - E:ui Fui =_ const. A.32

The proof is very similar to the prpof for the simplest case. Differentiation
of the above expression with respect to x results in an expression which

mist be equal to zero if the Euler equations are valid. Details of the

proof are left to the reader.

Example: The brachistochrone problem in three dimensions.

We again take gravity to act in the positive y direction. The problem
now is to minimize

b4
I = f.'l ‘Jl + y,2 + Z'2 dx A.?;a
Xq .
ES
I = f F(y,y',z') dx A.3k
X ;

Buler's equations are:

d
(1) F, - —th

d
= & _&_ = 0
dx Ny Jisyz+za
z! 1
= = & A.35
'J; 'J-l+y'2+z'2
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{2) F - }"Fyl Lo 21F21 = b

1 1
'J} \/l + 'y.‘a + z'2

= Db

Dividing (1) by (2), we see that z' = const = C. Therefore the curve for
vhich the integral is constant must lie in the plane ' :

z = Cx+d S A.36

Substitution of this expression into either (1) or (2) results in an equation
for y which is formally identical to that obtained in the two-dimensional
case. 'The answer is the equation of a cycloid with undetermined constants
sufficient %o allocw the boundary conditions to be satisfied.

Variational Problem with Constraints.

Very often & variational problem is presented where, in addition to the
problem of determining a function which causes an integral to assume a
stationary value, the resulting function must satisfy subsidiary conditioms.
That is,; the field of functions to be investigated is restricted to functions
which satisfy a subsidiary condition. An example is the so=-called "isoperi-
metric"” problem:

Find the curve, y(x), which encloses the greatest area in the xy plane,
and which has a given length.

Here the given length of the curve imposes a constraint. The general
problem of this type is to fird the particular function, y = u(x) among all
admissible functions y = ¢4(x), which causes

X1
I{g) = f F(x,y,y') ax " A.9
X : -

to be stationary, the functions ﬁ being subject to the further subsidiary
condition '

H{g) = f " 6(x,y,y') dx = const. A3T



Before developing the means for solving A.9 subject to A.37, we shall
briefly review the subject of maxime end minima of functions of several
variables. (Reference a, pages 183 - 204.)

Maxime and Minima with Subsidiary Conditions:
e We consider the problem of finding stationary values of a function,

f(x,y) vhen the two "independent" variables are not actually independent,
but are related by the subsidiary condition

gf(x:Y) = 0 A.38

This is not a fundamentally new problem, since we can (in theory, at
least) solve A.38 for one variable in terms of the other, substitute this
expression in f(x,y) which then is a function of one variable only, and pro=
ceed along well-known lines. It is more convenient and (according to Courant,
ref. a) "also more elegant" to preserve the symmetry of the problem and
éxpréss the conditions for a stationary value in a way which gives no pref-
erence to either variable. A very practical reason for preserving the sym=-
metry is that often the subsidiary expression is such that it cannot readily
be solved for one variable in terms of the other, or, if solvable, the re-
sulting expression is very clumsy to handle. The problem may be visualized
with the aid of the figure.

g

rS | ]

The plane is covered with curves

I
Q

f(x:Y)
_ which intersect the curve
i 9‘(3{:}’)

A-13
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Our problem.is to £ind the coordinates 'of the point (x,yy) where £(x,y)
has reached an extreme value, in this case (s and simultanecusly ¢ = 0. At
the point (er,ym) the two curves, f = C and g‘ 0 will have the same tangent.
It will be recalled that the slope of a curve -

F(x,y) = C

is computed as

A.59

kg
24?1 IH’-EI

Thus ir the case belr.g considered here, assuming that F‘x and ﬁfy do not vanish
simultanecusly we can write

i A é_:g A.kO
fy  fy '
at the poirt x,,y, or:
)
£ £
= = Bl = =M A.h‘l
gz_{ vy
Solving A.41, we have
£y + ?\.ggx = 0O
£ ¥ Mﬁy = 0 A2
Equaticne A.42, together with the constraint equation
9‘(3{:}') = 0 A.38

are three equations in the three unknowns, Zp,yy and As

The above discudsion is only intended to make the following rule seem
plausible. The rule is proven rigorously in many calculus books, for example
Refererce a. The factor A is known as Lagranges' Multiplier and the followlng
rule is known as Lagra.nges Method of Undetermined Multipliers.- (Ref. &, D.
191,)
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"To find the extreme value of the function f(x,y) subject to the subsid-
iary condition #(x,y) = O, we add to f(x,y) the product of #(x,y) and an
unknown factor A, independent of x and y, and write down the known necessary
conditions

fu+ My = 0

£, + My = _O A.k2
for an extreme wvalue of

F = £+ M _ A.L43

Equations A.42 together with § = O are sufficient to determine the coordinates
of the extreme value and the constant of proportionality, A." '

Example:
Find the extreme wvalues of
u = Ky Aol}h‘

on the unit circle with center at the origin, that is, subject to the con-
straint

plx,y) = x@+y2 -1 = 0 Als

F = xy+ A2 +y2-1) AM6

il
o
i

Fy = y+ 2

Fy = X+ 2\y = .O r

g = 2+y2-1 =0 AT
-

Equations A.47 may be solved for x,y,A. We obtain the four points

x = % WJE?E
3515/2
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We also find

and

I.e.; there are four points on the circle where u is stationasry--two maxima
and two minima. -~ '

We will find that Lagrange's method of undetermined multipliers is very
useful in handling variational problems with constraints.

Returning now to the variational problem with constraints, we have to
find the stationary value of

X1
L. = f _F(K:YJY') dx A.9
o ;
subject to the constraint
X1
to= ij G(x,y,y') d&x = -comst A.3T
%o

As usual, we assume that y = u(x) is the curve which satisfies our require-
ments. Again we form a function which is varied from u(x), but in order to
allow freedom to satisfy the constraint equation we introduce two parsmeters,
€1, €2 and let y(x) be a member of the two parasmeter family

y = u(x) + en{x) + eal(x) A48
vhere 7 and { are twice differentiable and
n(x:) = k) = b(x) = btxy) = 0 A.49

Now the two integrals I and H are functions of the two parameters, €; and €2
and

X3
¥(es,62) = Ljp F(x,u + €10 + €28, u' + €,0' + e28') ax A.50
%o
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must be stationary at €; = ez = 0 with respect to small values of €; and ez.
€, and €o are connected by the relation

X ;
g(e1,€2) = G(x,u + €1 + €28, u' + €1n' + e2f') dx = const A.5L

Xo

But now Lagrenge's method of undetermined multipliers tells us that to find

the stationary value of V(ei,e2) subject to the subsidiary condition g#(e;,es) =
const we should form the function

o= verd
and that
Ve + M:(El = 0
at €1 = €2 = 0 A552
1|r€a+>\5b’ea = 0 :

are necessary conditions for the existence of a stationary value of Y. The
choice y = u(x) assures that the stationary value occurs at €; = €z = O.

Performing the operations indicated by A.52, and after the usual inte-
gration by parts, we obtain

Xy : '
[7 e -5m) o6 ho) e
%o ] __
X
d d
Lo -0 o6 -] o

The integrand of the first equation must be zero for any 7n unless A
depends on 1, and if A\ depends on 7, the second equation cannot be true.
That is, the first of equations A.55 only requires that the quantity in curly
brackets be orthogonal to the functionig. But if it is orthogonal to an arbi-
trary functionin, then it cannot also be orthogonal to a second arbitrary
function . We therefore conclude that the integrand is zero and

]
o

A.55

|
o

"
F -3 ¥ = o0 - A5k
y—.: dx y!
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whers
F* = F + AG

Tre integral of Equation A.S4 contains the parsmeter A in sddition to the two
constants of integration. The values of these three constants are determined
from the boundsry conditions and the constraint Equation A.37.

Example: The isoperimetric problem

T
I=;f 2 a0 A.55
2 Q

B
.e=fds - A.56
A

Here we have the problem of joining two fixed points, A and B by a plane
curve of given length, [, so that the area enclosed by the curve and the
chord through A and B is maximum.

B Tt 2|1/2
I = f as = f r© + C’—’) ae AS5T
i - - \ae

Her=
=/ 1 -]
F(r,r',0) = = o A.58
1/2
G(r,x',0) = (x® +x'®) A.60
F¥ = F + G . , A.61
1/2- A
P = 212 4 (22 + r'2) . A.62
2

The Buler equatior 1s

e o [ e
(22 + »'2)2/8 g0 | (x2 + »12)

1/2 = 0 A, 63
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This leads to

Tan = 212 - 12

by 1
—(W— - 3 A6

The left side of A.64 is the expression for the curvature in polar coordinates.

A.6l4 therefore states that the curvature, l/p , is to be constant, and the re-~

dquired curve is a circular arc of radius A passing through the two end points.
Problem:

Prove that the sphere is the solid of revolution which, for a given
surface aresa, has maximum volume. Tske

“ a
2
Area, A = 2nfyds = euf ¥(1 +yy) dx
o

a
Volume, V = nf ¥y2 dx
o}

VARIATIONAL PROBLEMS WITH CONSTRAINTS, CTD.

In the last section the constraint was expressed in integral form.
Numerous other types of constraints arise, & few of which are considered be-
low.

Ordinary Constraints

We wish to find a curve, x(t), y(t), z(t) (to < t < T) in three-dimensional
space, subject to the constraint that the curve shall lie on a given surface,
G(x, ¥y, 2) = O and shall pass through two given points A and B on that sur-
face. We wish to optimize

T
I = f F(x,¥,2,%,¥,2)dt
to
Subject to the constraint
A.65
G{x,y,z) = 0
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We might immediately rsduce this problem to that considered on pages
A-3 to A-5. If we solve the relation G(x,y,z) = O for one of the varisgbles,
for example z, in terms cof the other two,

z = g(x,y) A.66

Teen A.65 can be written:

;

I = Jt F[ffusf)’sg(x,sy}:i:i’:{igx + jg}:ld.t

Q
A.67
III ¢
I = f H(x,.v_,i,n'r)dt
to
Qur twc Euler expressions are: N
® _l'
d . - L r oF + & (pg) - . F.OZ
e S Fp + (F38y) - Fogy Fix = ©
A.68
a ; d d 2
e -BE, = —F, -F_+— - F - Fs= = 0
at Y T at y * auFaey) 2By ” T,y

In the last term of each of A.68 we can interchange the order of dif-
ferentiaticn ’

d o2 d oz
- a_ = A6
at &x 3x at & Sy _ ?
Ther=fore
a - d o o
prmmiSERE 20 S :F + — - F —_ 0
A.TO
d . - d ” ' -
dt_FY F}' * g?f Q{; Fé FQ =0

Now G, and a/at Fy; = ¥, are hoth functions of time. If we can find a
functiorn of time A(t) such that

S F, -F, = A A.T1



then, using the fact that

Gy e
Bx = = —— = - X A.T2
G, Sy Gz _

a
S Ps-F, = N

- dt X X X

d F. - F, = AG | A.T3
at ¥ Y .

a -

EFE-FZ-MZ

_

. Thus, a necessary condition for an extreme value of I subject to the constraint
G = 0 is the existence of a function A(t) such that equations A.73 are satis-
fied in addition to the constraint equation. We have four equations in the
four unknown functions of time, x, y, z, A

Non-holonomic Constraints

The two types of constraint considered so far (integral and ordinary)
are special cases of a more general type. If the constraint is a non-integrable
differential expression of the form

G(x,y,z,y’,.z') =0 A.Th
which cannot be obtained by differentiating an expression
H(x,y,z) = 0 | | A.T5

it is called a non-holonomic constraint.

Most differential equations are non-holonomic constraints. For exXample:

y' =x = 0 A.T6



is a hclonomic constraint, since it can be obtained by differentiating

- B o conit A.TT
: 2
However,
V' - 2 = 0 A-TB

is a8 non-holonomic constraint, since we cannot find an expression like A.TT
whick can be differentiated to obtain A.T8.

We state without proof the following general rule, which applies to
hclonemic and nor-holonomic constraints: (Ref. Courant-Hilbert, pp.221, 222).

"If the solution does not satisfy the Euler equations corresponding to
the expression G, then there exists a multiplier, A(x) such that the Euler
equations corresponding to the expression

F¥* = F + \G A.T9

are satisfied.”

Let us apply the above rule to the variational problem with an integral
constraint, considered on pages A-14 to A-15. Iet

Z' L G = 0 A.SG
be the constraint equation, equivalent to A.37. Written this way, it is seen

that the problem on page A-1L is a special case of optimizing the integral

X
I = L/n F(x,¥,2,¥y',2") ax, A.81
X,
Subject to the constraint

G(I,y,z,y',z_‘) = 0 [ ] A.aa

r. this special case, z and z' are missing from F, and z is missing from G.
Applying the gensral rule, we form the function
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F* = F(x,y,¥") + Mx)(z' - 6(x,5,¥")) A.83

and write the Euler equations

4 OF* _JF* _

dx ; y

*
CI—-aF—-—aF*=o A.84
dx dz' Oz :
The second equation is:
d .5 =0
dx
A = const. A.85

and the first equation then becomes the same as A.5k.

Extension of the Simple Variational Problem
(Reference C, pp 208-210)

For the simplest variastionsl problem--discussed on pages A-3 to A-5--
the Euler expression was derived by imbedding the extremal, y = u(x), in a
one parameter family of functions, y = u + €n. The fact that this parameter,
€, occurs linearly was merely convenient for the development, not necessary.
More generally, we may wish to define a family of functions, y(x,e), with
y(x,0) = u(x) snd

nx) = & y(x,e) _ : A.86
de €=0

If we introduce the terminology

8y = en(x) A.8T
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and

8 = ¢ — A.88

where V(e) is defired similarly to A.13, then |

X3

5 —] (= — = = ! ) o

I S ef (nFy.+1]Fy,;d.x A.89
€=0 Xy ;

After the usual integration by parts,

_ X X=X7
81 = ef (By - (}E Fyi)ndx + eFyim A.90
Xo =%o
X a A=Xq
81 = Ljﬁ (Ey - az-Fyr)ﬁydx + Fyrﬁy A.91
X0 X=Xy

The expression A.91 is called the firast variation of the integral I even if
7(x), hence By, does not vanish at the boundary. Suppose that we do not
impose conditions on y at the boundaries, x = %X, and x = . A.91 still is

& necessary condition for I to be stationary. FRut if I is stationary in this
case with arbitrary Oy at the boundaries, it is certairly stationary in the
more restricted case where By varishes at the boundary as in A.13. This then
implies that the Fuler eipreazsion varishes:

4
F,-=F, =0 A.92
Y oy

and ccnsequently because of the arbitrariness of By everywhere, ineluding the
bounderies:

F\ = 0 A.93
L 3;2%
x=xl

Now, suppose that the boundsry velues of y occur explicitly in the expression

to be optimized:
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X
I = f F(x,y,y")ax - #(y,) + ¥lys) | A.Sk

Xo

vhere !

Yo = ¥(x)

yvi o= y(x) A.95

and y, and y; are not prescribed. This caseé occurs very frequently in tras

-Jechory problems, where we often are interested only in the terminal value

of some quantity, for example, the perigee altitude or the horizontal component
of velocity, etc.

For I to be stationary, we require that the first variation of A.94 vanish:

] Sy1

X=X

- Es + Fy Jayo .0 A<
lge

By the same reasoning used in obtaining A.92 and A.93 we obtain:

Xy :
BT = f (%, - % Fy1)Bydx + E' + Fy,
Xo

. -
Fy = Fy' 0
(v +Fy.)' = 0 A.97
X=X
(8 '*'Fyt) = 0
X=X

The latter two expressions are called natural boundary conditions.

The variational problem with variable limits of integration.

Up to now we have considered only variational problems in which the
limits of integration were fixed. Now consider the brachistochrone problem

where the curve, y(x) is to Jjoin & given fixed point, the origin, and a given
line y = mx + b.

A=25



This problem is representative of a class of problems in which the interval
of integration is variable. We will confine ourselves to the case of one in-
dependent and one dependent variable only. ’

Ist

b
I = L/“ F(x,y,y')ax A.98

a

where A ard B, the end points of the arc of integration have a.'bsci_ﬁsas a and
b, respectively, a and b are not necessarily constant. In finding the con-
ditions for a stationary value of I we will vary not only the arc y = u(x)
whizk joins A and B, Tut we shall also allow B to move along & curve I's whose
equation is

y = ea{x) A.99

We will keep the point A fixed but the results can be generalized to allow
for the case where A can be displaced along the curve I';, whose equation is

y = &(x) ' A.100

When the end pointd of the interval were fixed, we varied the function y(x)
from the extremal u(‘f) by constructing the cre parameter family
¥y = u(x) + en(x).

Eere we will very y(x) ir the more general manmer indicated by A.86, A.87.
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For the extremal we taske y = u(x,0) and for the varied curve we teke y = u(x,e).

Tre criterion for a stationary value of I is 85I = 0. When the end point B is
allowed to vary, we have

b+dxy,
8L = f F(x,y + by, y' + by') dx A.101
a
b

-f F(x,y,y') ax

a

b
8T = Fdx +J; (F8, + Fy.8,,) ax A.102

b
(A.102 can be obtained by differentiating F dx with respect to €, allowing
for the fact that b is a function of €.) Y a

A.102 can be seen geometrically from the following figure.
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A.102 can be integrated by parts

" oF

. _
a
+ L ay{py - & Fy} dx A.10%

Here By, 18 u(b,e) - u(»,0) and the subscript b indicates values corresponding
to x =b. BSirce I must be stationary even if B is fixed, i.e., if the first
two terms of A.103 are zero, we can repeat our earlier argument used in ob-
taining A.93 and ccnclude that

=i = 0 : A.104

This conditicn, however; is not sufficiemt. If B varies, we must in addition
regquire that

_,_‘:l.bd_-_‘gt A Byb. = 0 - A.105




From the figure, it is apparent that for small daxy

By, = ga2' dxy - y"dx-b | A.106
80 tﬁat A.T5 becomes
E+(ga' -y')@—} dx, = 0 A.107
oy x=b

Thus in addition to A.105 we require, since dx, 1is arbitrary,
F+ (g2' - ¥') - = 0 A.109
. oy [x=p

This equation is known as & transversality condition and the curve I's is said
to be transversal to the extremal at B. The same development, of course, can
be used when the lower limit of integration is variable. If the end point

A can be displaced along the curve Iy, where the equation of Iy is y = g1 (x),
in addition to B being varisble along I's, the following theorem applies:
(Reference b, page 213).

"If the end points A and B of the range of integration of the integral
b

I =L/“ F(x,y,y')dx can be displaced along prescribed curves, then I is
a .

stationary when the following necessary conditions are satisfied:

(1) y, the ordinate of the extremel, satisfies the Eulerian equation

(2) af x=a, F+(g'-y") F_ . 0
oy’

where a is the abacissa of the end point A, which can be displaced. along the
curve y = g (x)

(3) stx=1b, F+ (g2' - y'")

oF
v = O
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wkere b is the abscissa of the end point B, which can be displaced along the
curve y = go(x). In these equations, y' is the slope of the extremal and
€1';82' are respectively the slopes of the displacement curves of A and B
at x =g and x = b."

Problem:

. pB - 1fe
I = f Glxy)(1 +y2)  ax
A :

A and B are both variable. Prove that the extremal and 'y intersect
orthogonally at A, and that the extremal and T2 intersect ort.hcgonally at B.
Orthogonality is shown by

g'y'+1 = 0.
THE EULER EXPRESSION AS A GRADiENT IN FUNCTION SPACE

If we have a function of n variablea, f(x,_,xg. »+X,), the condition for
£ to be stationary is expressed. as

gred £ = O | A.110
where grad f is the n component vector
f](l le + fxa .ng + ||; fm.I]m A.111

If the n variables, x; are all functions of a parameter, t, we compute the
rate of change of f as

£(t) = 2; Xty = ; eradf ) A.112

vhere V 1s the velocity vector with components X4+ Similarly, the Euler
expression which vanishes if the functional is stationary, may be regarded

as the gradient of the functional in function space (also called Hilbert
space).
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For example, in the functional

X1 .
I{9) = U[\ F(x,y,y')dx A.113
xo i

(where y = ®(x) are the admissible functions) assume that the ®(x) are also
functions of a parameter t (as they are functions of a parameter ¢ in A.12 and

A.86).
vy = o(x,t) A1k

Then I = I(t) as in A.13. Then, as in A.19,

Y .
a f o(r, - L Foi)ax A.115
at y oax Y

%o

This expression, A.l1ll5, is completely analogous to A.11l2 for the function
F(X15%X2e00%,). In general, (Courant-Hilbert, p. 223) one may define the
gradient of a functional, I{®) as an expression G{®)} such that if a parameter,
t, is introduced to make the functions ® a one-parameter family of functions,
the relation

a =
(e} = f o G(¢) ax A.116
i X2

holds.
Variational Problems in the Canonical Form

(Ref.: (a) Whittaker, pp 265-267
(b) Courant-Hilbert, pp 238-242)

In the treatment of mechanics problems, based on Hamilton's Principle,
Chapter III, we found that it was advantageous to transform the integrand--
the Lagrangean--by means of a Legendre transformation, the resulting Euler
equations of the variational problem then were in canonical form. With the
equations of motion in canonical, or Hamiltonian, form we could apply the
Hamilton=-Jacobl theory and make use of all the results of the transformation
theory of mechanics. This procedure can be applied to any variational prob-
lem, with one independent variable; the general method is due to Ostrogradsky
(see Whittaker, pp 265-26T).
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()

Let L{t ,,y,&,y....(yz Z,%,% eeoe 2 ) be & function of the independent
variable, t, and the two dependent variables y, z, and their derivatives up
to order m and n, respectively. The following development applies to any
nurber of depenient variables, if extended in the obvious manner.

By straight-forward extersion of the proofs on pages A=% and A=-9 (see,
for example, Refsrence A, pp 512-513), it is easy to show that the Euler ex-
ressions which furrnish the conditions under which the integral

ta '
I = h/ﬁ L dt ' A.117
to
may be stationary are:
8L .4 oL, ...+ A B a” oL _ 0
dy dt dy at™ ay
' ; A.118
¢ n i
@L - g— é-];_‘- + sees + (—1)11 d— % = O
dz 4t 9% at™ dz
o
We let T
DL a4 dL m-1 g1 /3r\
pl = — - e— e L.+ (-l) = —
d at oy am I\ 5%
m=2
pp m L& 0L (-1)m"a dm_e éﬁ A.119
O 4t oy ' at
- oL
P = -
oy
p = aL - 'd.— él:l- + sses + (-l)n_l _dn-l a—L
m+l 3%  dt o% at?-1 \\n
AL -2 gh-e aL
pm+2 = S“E— 2RO O P EDO R0 "‘ ("'l) n_2 A.llg
Pm+n = ;
Z
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Further, let

. m-1
dx = ¥s Q2 = ¥y eoeo Q = ¥
i n-1 fardeQ
Gl = %> Gpyp T By e QL ¢ 2
We now define the Hamiltonian function
H - -L + plg_g '!' P2q3 + (FE R + P —1%1
+ p (3) +p + eeee + p A.121
m (2) m+l%mh2 n—lqm+n
n
* pm+n " . ’J

where H is exﬁress?d as & function of t; gy ceee Upapn? Pls seees P
quantltles and are eliminsted by use of the expressions py = éz/a?,
Ppin = aL/a% Note that this definition of the Hamiltonian is more general
(because of the more general Pi) than our earlier definition

H = zi: piéi - L

However, if only velocities, or first derivatives of the y; and z; eppear
in the Lagrangean, then the definitions are the same. Now if we calculate
the variation of H,
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m-1
&H

n-1
oI JL. g1t JL
- T B4y - F O - z = Be
3 o dz
r=0 r=
m-1
oL
-5§62+ Z prﬁqr+l+p oy
r:

m+n=1

m+n-1

n
z: Pr DQp41 + Ppyn OZ 4 ZE Uy OPp
r=m+l

r=m+l
n
.3 On
Since
T & -

éﬁ = P é% = Pz + P2
ay ay o

JL

- —_ :ba'I‘PE OOOUB—Iﬁ = Pm

o¥ Sy

A.122 reduces to;
m+n m+n
bo) = - . :
H Z‘prﬁqr-qu_&pr A.123
r=1 =]
ard therefore, sirce
m+n m+n
BH = Za_H_Sq_r+Za£5pr
aqT apr
r=]1 r=1

A.12h4
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We have:

dq, OH dp,. oH -
at  dp,  at da, '

Thus the differential equations--the Euler relastions--are expressed in
canonical or Hamiltonian form.

As an example, consider the problem of maximizing some integral I;

t1
I = f F(xly X2, il: 5‘2: t) I A.126
to :

Subject to the equations of motion as comstraints. Since the equations of
motion are of second order, the constraint equations will be of the form

G(x1, %2, X1, X2, %1, %2) = O A.127
According to the Lagrange Multiplier rule, we should form the function
F* = F + A(t)G ' A.128

Thus

F* = F*(xl's Xo, 3.51: Xo, #1, o, t) A.129

Then according to Ostrogradsky's rule we should take:

QL = x B = GF* . &g
axl at 821
G2 = ¥ p2 = ég;
Oy © A.30
Qa = X2 Pa = -l 5 S ap
0% dt o¥e
Qe = X2 Py = @
OX
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We form the Hamiltonian (herem = n = 2)

H = «F%¥ + D1ds + DagQs + Pa¥y + pPua¥o A.131

Since
Vi %
oy %o

we can compute these derivatives, solve the resulting expressions for ¥,
and ¥ and eliminate ¥; and ¥z from H. Then the canonical equations of mo-
tion are:

day _ OH dpy  _ oH

at  dpy a . da

A.132
49z _ OH dpo _ _ OH_
dt apg at a‘h

Note that these canonical equations of motion should contain only a single
time derivative on the left-hand side, in each equation, i.e., they should
be of the form:

(.11 = fl(‘:ll: 925 Pis P2, b)
@2 = f2(@, 92, D1, P2, t)
A.133
P1 = fa(a1, g, Pi, P2, t)
P2 = f&(q.l: 9z, P1; P2, t)

All the time derivatives on the right side should be eliminsted by means of
the expressions q; = gz, etec.

Numerical Methods. Reference (b) Chapter VII.
Reference (2) Chapter IV, pp 174 et. seq.

There is a relatively small number of analytical solutions to variational
Probleme known. Ccnsequently, numerical methods have been used extensively.
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When faced with the necessity of solving a variational problem numerically
one usually has the choice of attacking the problem directly or of reducing
it to a differential equation (Buler's) and solving the differentisl equation
numerically. (This is called the indirect method of the calculus of varia-
tions.) Since the class of solutions of Euler's equation is very restricted
compared with the class of all functions which must be tried in the integral
equation, and since machine methods of solution of differential equations are
well established, it often is preferable, if possible, to deduce the Euler
equation and solve it, rather than the original stationary value problem.

There are, however, several methods of attacking the problem directly
which are well developed and which are well suited to machine methods. Two
of these methods will be discussed very briefly here. ' For a more complete
discussion, references b and c may be consulted and there is an extensive
body of literature on direct solution of variastional problems.

The Rayleigh-Ritz Method.

The object of this method is to replace the variational problem by that
of finding extreme values of functions of several variables.

First it is assumed that y can be expressed in terms of known functions
of x. For example, y might be assumed to be expandible in a power series,
or in a Fouriler series. On substituting the assumed expression for y in
the integral, the integral can be evaluated, the coefficients in the expres-
sion for y remaining to be evaluated. By the usual methods of the calculus,

the coefficients can be adjusted to maximize (or minimize) the integral.
|

Example:
1 _
I = f (1 - ) (y'2) ax A.134
=1
subject
. 1
¥ dx = 1 _ A.135
-1 '

Let us assume that y can be expanded in a power series and that the first
three terms will give reasonable accuracy for our purposes

¥y = a+ bx + cx® A.136

Substituting our assumed expression for y in A.134 and A.135

I =£62+£5 A.137
3 5
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1 = 2(a® ;E_+2—;‘£.+% -A.ljS

A.137 is a function of three variables, a, b, ¢ (a is missing) which is
tc be made stationary subject to the constraint eqﬁation A.138. But this is
precisely the problem which we treated on pages A-11 to A-14. Our condition
for a stationary value of I 1s, according to Equaticn A.51

or/da _ 9I/db - I/de _

/e | s/  offac A-159
Balustivi BE AI39 SEEUltE T6: |
0 . 83 . __3®efl5s . _, A.140
b(a + c/3) bo/3 k(a3 + c/5)
The possible solufions are:
(1) » = -2, a =2¢ =0
@ A =0 b =c =0 o s

u
o
0

"o

]

\N
)

(3) » = -6, b

From A.138 we have for (1)

b = ~N3/2, for (2) a lf'JE and for (3) a 45?8 and finally

-
~ =0 y = 1/42 L
4wz § = 35 - A1
-h = 6 y = “/5_/8 (l-z'xa) J

These functions are the first three Legendre functions, except for a constant

multipliexr
1/2 o R '
Yy = 6&—9 Pn(x) n = 0,1,2 A.142
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Problem:
Solve the above problem analytically, not by Rayleigh-Ritz.
Hint: Take A = n(n+l). Lengendre's equation is g?-{;cg;x%>%%} + n(n+l)y = O.
- % X

In this particular case, the numerical method results in an exact solution

of the variational problem. This, of course seldom happens except in text-
books and for carefully doctored problems. In the real world, the result
usually will be an approximation, the closeness of the result depending on

the selection of the approximating functions. For this reason, before at-
tempting a solution by the Rayleigh-Ritz method (or any other numerical method,
for that matter) it is highly advisable carefully to investigate the problem
analytically so that at least the gross characteristics of the solution are ..
knowm.

The problem of investigating the degree of approximation achieved is
highly important, it also can be very difficult. One indication is the
closeness to which the left side of the Eulerian equation apprcaches zero.

If it vanishes identiceally throughout the interval then the solution is exact.

Galerkin's Method.

The Rayleigh-Ritz method attacks the problem by converting it to an
ordinary stationary value problem. The Galerkin method uses the condition
for a stationary value, but does not convert the problem.

On page A-5, equation A.19, we showed that a necessary condition for a
stationary value of I is that

X1
5 d
f n(m--&-_im')dx = 0 = A.19
XO :
If u is an exact solution of the problem, then A.19 is true for any arbitrary
7 which satisfies the conditions of the problem. If u is not an exact solu-
tion of Euler's equation, then the quantity in parentheses (Euler's expres-
sion) does not vanish identically throughout the interval and A.19 is not
satisfied by arbitrary n. Let us choose

o
T ™ E: T (%) A.143
' m=1
as an approximate solution of Euler's equation A.20. Since A.19 is true for

arbitrary n, we choose 1 = fm(x), m=1...n. We substitute diir approximate

solution y, in A.19 and obtain
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Xy
r £ (x) JF OF

. .
ey sy — 0 4 A- lJ'I'J'I'
oy, dx oy’

n

Because y, is not an exact solution of Euler's equation, the integrand does
rot, in general, vanish. In fact, it contains n arbitrary constants, a, and
after the irtegration is carried out, the result is an equation in the n
constants, a.

glay, a8z oo ah) = 0 A.1k45

Since there are n different functions, fj, we can determine n equations in

the n unknown constants and satisfy equation A.144. It is not obvious--to

me, at least--that this process requires y, to converge to u, a solution of
Euler's equation. However, we will take refuge in a well-known device and

state that such an investigation exceeds the scope of the present work.

Problem: TUse Galerkin's method to verify the above example of the
Rayleigk-Ritz rethod.

The Method of Steepesst Descent.

This method 1s developed in some detail in the text, Chapter IX.
CONCLUSION

Iz the time (ard space) which we can devote to the calculus of varia-
ticks; we have besn able to give only the briefest consideration to a few
important pronlems. Marny questions have heen ignored or gracefully side-
stepped. For example; most of our development has assumed existence of a
sclutior, we have ofter required ths existence of higher derivatives (a re-
strictive condition that may not be required by the physics of the prohlem),
we have given nc ccnsideration to determining the type of stationary solution
which satisfies the Eulerian equatior, i.e., whether we have found a max,
mir, or irnflecticxz pcint, etcs All of these considerations are of great
impcrtance in particular problems. '

As an example of the type of troubles which can be encountered, consider
the problem of Joiring two points A and 3 by an extremal of

X
J = f : (@) (y' +1)% ax. . A.146

%o
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The Buler equation is
y'(y' +1)% + v'3(y' + 1) = const

and the solution is

y = mx+b A.148

Suppose that A and B are located so that the slope of y is between =1 and O.
Since each term in the integrand is squared, certainly J has a positive value.

r

But now consider the path ACB where y' = O from A to C and y' = -1 from C to
B. Then the integrand of J vanishes throughout the interval, J = 0, and the
solution of the Eulerian equation did not furnish the minimum. The solution
ACB was ruled out by the requirement for continuity imposed in obtaining
Euler's equation. '

This rather melancholy situation can be remedied, but the considerations
are appreciably more sophisticated than we can handle here. In many cases
such solutions can be ruled out on physical grounds--however, there are num-
erous physical problems where such discontinuous solutions are precisely the
ones sought. (For example, the torque curves of an optimum bang-bang servo
and the discontinuous thrust in some trajectory problems.) In such cases,
it will be necessary to apply more advanced methods some of which are given,
for example, in the book by Bliss.
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APPENDIX B

ANALOG COMPUTER SOLUTION OF THE ORBITAL FLIGHT EQUATIONS*

by
L. E. Fogarty and R. M. Howe

A modified flight-path axis system is introduced to simplify computer
mechanization of the orbital flight equations. Complete six degree-of-
freedom equations are presented, including aerodynamic, powerplant, and
control forces. Electronic differential analyzer mechanization of these
equations in both real and fast time is described, including a novel
technique for division which preserves favorable multiplier scaling.
Specific machine results are presented which demonstrate accurate solution
of close-satellite trajectories, including re-entry from satellite altitudes
to sea level, With no change in circuit or scaling the same computer

_mechanization yields zero=-drag orbits which close within several hundred
feet of altitude.

* This work was supported by the United States Alr Force, Wright Aeronautical
Development Division, under USAF Contract No. AF 33(616)-566%
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ANALOG COMPUTER SOLUTION OF THE ORBITAL FLIGHT EQUATIONS

by _
L. E. Fogarty and R. M. Howe

l. Introduction

One of the most. challenging of simulation problems is the computation
of the trajectory and orientation of an orbital flight vehicle. The problem
is particularly difficult if an analog computer is utilized for the solution
of the orbital flight. equations. This is because of the tremendous range of
many of the variables, such as flight velocity, and because of the fact that
in orbital flight the net radial acceleration is the small difference of two
large farces, gravity and centrifugal. If the simulation must be conducted in
real time, the extremely low rates of change of the variables present addi-
tional problems for an analog computer. In this paper an axis system is in-
troduced which greatly reduces these difficulties, and ekamples of accurate
analog solutions of orbital flight and re-entry to sea level for lifting
vehicles are presented, both in speeded-up time and in real time. The axis
system described here is also believed to offer advantages for digital mech-
anization of the problem.

2. Axis Systems

The equations which must be integrated to determine the motion have been
well known since Euler's day. However, even though the form of the equations
is rigidly prescribed, there is freedom to select axis systems and variables.
The efficient use of a simulator computer requires that care be exercised in
selecting computer variables, since the accuracy of the result is greatly
affected by scaling.

The equations of motion describe the motion of the vehicle with respect
to inertial space. This description of the motion is relatively uninterest-
ing, since close satellite missions' will be concerned with the surface of
the earth. Thus we will have use for an earth reference frame as well as
the inertial reference frame. Further, because the moments and products
of inertia are most easily referred to vehicle bedy axes, anmd because sero-
dynamic and powerplant forces and moments are computed in & reference frame
which moves with the vehicle, we will have use for a reference frame which
is rigidly attached to the vehicle. Other sets of axes will be introduced
for convenience.

The reference frames which will be used are illustrated in Figure 1
and include the following:

i
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INERTTAL, I-FRAME

Mption of the vehicle with respect to "inertial" space is referred to
the I-frame. Origin of the I-frame is the center of the earth, the reference
plane is the equaterial plane, and the refererce direction in the plane is the-
vernal equirox. Although the origin of this frame describes & near circular
motion about the sun which produces an irertial force, it can be shown that
this force is almost exactly cancslled by the sun's gravitational force for
rear satellites, and therefore it is valid to use the center of the earth as
the origin for an inertial frame for this type of problem.

NAVIGATIOKAL, N-FRAME

Motion of the vehicle with respect to the surface of the earth is re-
ferred to the N-frame, which is identical tc the I-frame except that it ro-
tates with respect to it with the earth's angular velocity b

The reference direction of the N-frame is a line from the center of the.
earth through the intersection of the prime (Greenwich) meridian and the
equator. In Figure 1 the unit vectors for the N-frame are 1, Jp, kp. The
vehicle at point P is located with respect to the N-frame by the longitude A,
latitude L, and radial distance r.

BODY AXES, B-FRAME 5

Conventional body aves xy,, ¥y, and zp are used with the origin at the
center of gravity of the vehicle. In level £light the Xp axis points forwerd,
the 2zp axis downward, the Yn axis sideward to form a right-hand set. For
& winged vehicle the ¥y, zp axes lie in ths plane of gymmetry cf the vehiecle.

EULER ANGLE, E-FRAME

Orientaticr of the vehicle hody axss is specified by three conventional
Euler angles V¥ (heading), © (pitck), and § (bank); angles which give the ori-
entation of the B-frame with respect tc the E-frame. The E-frame origin is
at the center of gravity of the vehicle, the reference Plare is perpendicular
to the radius vector to the center of the earth, and the reference direction
in the refersnce plane is north. Thus for an ideal sprerical earth the unit
vectors Ie: Ee: and Ee for the E-frame point nmorth, esst, end downward, re-
spectively.

MCDIFIED FLIGHT PATH, H-FRAME

The vehicle trenslaticnal equations of motion are referred to the H-
frame. Origin of the F-frame is at the center of gravity of the vehicle, the

B=2
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Figure B-1. Axis Systems Used for the Trejectory Equations.
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reference plane is perpendicular to the radius vector to the center of the
earth, and the reference direction is the projection of the' vehiele inertial
velocity vector ibonto the reference plane.'-ihus for an ideal spherical
earth the unit vectors Eh, jh, and ih for the H-frame point, respectively, in
the direction of horizontel component of velocity, horiéontally at right
angles to this velocity, and downward. The H-frame is oriented with respect

" to the E-freme by the heading angl@“wh,“as shown in Figure 1. The vehicle
velocity 3P is oriented with respect to the H-frame by the attitude angle On-

%. Notation

Wherever possible, standard symbols have been used. Thus U, V, and W
denote the x, y, and z components of a translational velocity vector; B, Q;
and R are the x, Y and.z components of an angular velocity vector. The
vehicle velocity Vp (i.e., the translational velocity of the B-frame) with
respect to the inertiel, I-frame can be resolved into components along any of
the axis systems, the component subscript denoting the particular system.
Thus Ue, Ve, and We are the components of Vp along the three E-freme axes,
respectively, whereas U,, V,, and W, are the components of Vp along the three
H-frame axes, respectively.

Motion of the vehicle (i.e., the B-frame) with respect to reference
frames other then the inertial, I-frame and motion of reference frames other
than the B-frame generally will be identified with a double subscript or a
different symbol.. i

4. Translational Equations of Motion

Having defined the various axis systems which we will need to consider,
let us turn to the derivation of the translationsl equations.of motion using
modified flight-path axes (the H-frame). First we note that Euler's equa-
tions of motion representing equilibrium of forces along three orthogonal
moving axes x, y, and z are:

n
O
W
[

m(l - R + Wa) + X
n(V - WP +UR) +Y = O B.2 .
(W -UQrVR) +Z = O B.3

Here m is the vehicle mess, U, V, W and P, Q, R are the translationsl and ro-
tational inertial velocity components along the x, y, and z axes, respectively,
and X, Y, and Z are external farces along these axes, respectively. :
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We will use the H-frame as the reference axes for equations (B.l-B.ﬁ).
Since the origin of the H-frame coincides with the origin of the B-frame (the
“vehicle center of gravity), the translational velocity components of the H-
frame are Up, Vy, and Wy, the same as the vehicle velocity components along
Xh, Yhs and zp. Let us denote the H-frame components of the angular velocity
of the H-frame with respect to the I-frame by Pns 9, and ry. We note that

V, = O (by definition of the H-frame) B.4
v
= L = 0 B.5
Pn = 5
U
h
= o2 B.6
qh o

Thus EQs. B.1-B.3, referred to the H-frame, become

; U. W
-m(Uy - BR) + % = 0 B.7
r
-mrpUn + Yy = O B.8
. 2 r2
-m(Wh+g—hJ+Zh+meO = 0 B.9

vhere Zp is the zy component of the external force vector not including the
central force field term mgoré/ra, which has been included separately. Here
€o 1s the central force-field gravity acceleration at a constant reference

radial distance ry. Note that X, Yy, and Zy include the effects of oblateness
or tke gravity force.

et l1d ., s T 0 u
Next we observe that Wy = -r. Thus Z z= (rUp) =Ty + s Un =0y - %
and equation B.9 can be rewritten as
d th
2t "n
Integrating, we obtain
torx (xUy)
Uh=.1.f h g1 + \T%h/o B.11
rd, m b



This is e3sertially the angular momentum integral (actually mrUy = angular
momertum). In the absence of any external horizontal forces it allows direct
calculation of horizontal velocity Up as the radial distance r changes. For
finite X, the angular momentum is changed in accordance with the time inte-
gral of the moment rX,.

Let us now calculate &h, the rate of change of H-frame heading angle.
This will be tke differsnce between H- frame angular veloecity along kh (dowm-
ward) and E-frame angular velocity along kh(and Ke). Thus

1Irb = rh - W B.12

ez

where wgy is the Zg component of E-frame angular velocity f_ue. To determine
Wy relfer to Figurn 1 and note that

> vV T U *
(.De s —-—-—E—-—- ].n - -—e Je 3015
» cos L r
and
. >
fn = cos L Eé - sin L ke B.14
Thus
e = —1g-—7J3o-—=tanl ke B.15
r r r

Ve
and. ®y, = = ;2 tan L. From this and Eq. B.8 we have from Eq. B.12

. M v
]lfh =% _ll._ A _E! tarn L. B.l6
ml, r i
Ed. 2.9 zan be written as
. g.r= UE
W, = —=—2 . % et B.17
3= o m

Eas. B.1l, B.16, and E.17 are the three *ranslational equations using the H-
Lrams.
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5. Latitude, Longitude, and Altitude

From Figure 1 it is evident that

L = = = =—— 2 B.18
T b
and
; vV Uy sin
A W ———— e w B ¥n _ r B.19
r cos L rcos L

vhere r, 1s the angular rate of the earth (N-frame) Eith respect to the I-
frame, and is directed along the earth's spin axis, kj.

If we compute the radial distance from the center of the earth by the
Tormula

s po &r B.20

vhere r, is a convenient fixed radius, e.g., the mean radial distance of the
nominal orbit, then

5.1‘ = -Wh
and
h = hy + 8r + £,(L) B.21
Here h is the altitude above sea level, hy is the altitude at the reference

redius ry, and f,(L) is a function of latitude which introduces the geo-
metrical effect of latitude on oblateness.

6. Argle of Attack, Angle of Sideslip, Dynamic Pressure, Mach Number

The gserodynamic forces and moments are functions of angle of attack «,
ergle of sideslip B, dynamic pressure ¢, and Mach number M.

Defining Vg, the total aircraft velocity with respect to the air mass,
with body axis components Ugy, Vaps Wgps We have:
-1 W
@ = tan™ “8b B.22

Uab
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-1 Vgp cos O

; B = tan B.23
Uab
2
M = Vg/a B.25
U

cos O cos B

where ¢ is the atmospheric density and a is the speed of sound; both are func-
tions of altitude.

Equations B.22, B.2%, and B.26 are unusable when cos Q or cos P equal
zero, which might happen in orbital flight. There are other formulas for Q,
P and Vg which can be used; the best formula to use depends on the vehicle
heing simulated.

Determination of Ugy, Vg, Wgp requires knowledge of the vehicle orienta-
tion with respect to the E-frame, treated in the next section. Because of the
lengthy trigonometric formulas, they will be expressed in terms of conven-
tional direction cosines relating the B-frame to the E-frame. Expressions
for the direction cosines are given in Figure 2.

Let Iy 2,3, M1 2,3, ny,2.3 be the direction cosines relating the B-frame
to the E-frame. ZIet wx and wy be the north and east components of wind. The
velocity of & windless air mass with respect tc the I-frame is -rpr cos L
directed along the y. axis.

Ther. the B-frame components of the vehicle velocity with respect to the
moving air mass are:

Ugp = jl(Ue “+ We) + jg(Ve + Wy = TpX cos L) + I3Wg B.27
Vo = ma(Ug + wy) + ma(V, + W, = TpT cos L) + mgW, - B.28
Wgp = n;_(U‘E + WX} + na(Vg + Wy = T, T cos L) + naW, B.29

7. Rctaticnal Equations, Euler Angles, Direction Cosines

The =quations derived in the previous sections, along with the rotational,
Fuler angle, direction cosine, and force=regolution equations are summarized
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in block-diagram .form in Figure 2. The rotational equations result from
equilibrium of moments about the xp, yp, zp body axes and involve the com-
ponents Py, Qb, and Ry, of B-frame angular veloclity along these aXxes, respec-
tively. The equations are well known and are presented in the box labeled
"Rotational eqs., body axes" in the lower center of the figure. In many
cases most of the nonlinear terms in these equations are negligible.

To obtain the Euler angles V, 0, and f§ vhich orient the B-frame with
respect to the E-frame it is necessary to calculate the B-frame angular
velocity with respect to the E-frame. This is equal to the B-frame angular
velocity with respect to the I-frame (P, Q,, and Ry along X, ¥, zp) minus
the E~-frame angular velocity with respect to the I-frame. The resulting roll,
piteh, and yaw rates P, @, and R are given by the formulas in Figure 2 shown
in the box labeled "Roll, pitch, yaw rates” at the lower center part of the
figure. To the right of this is a box which summarizes the familiar formulas
for the Euler angles as computed from P, Q, and R. Below this is a box con=
taining the formulas for the 9 direction cosines.

It should be observed that there are other methods for representing
the vehicle orientation, and there are alternative ways of computing either
the Euler angles or direction cosines. The actual schemes used will depend
on the required outputs from the simulation and the type of computer used to
solve the equations.

8. Resolution of Translational Forces

Aerodynamic, control and power-plant forces and moments will usually

be specified in terms of body-axis or stability-axis ccefficients. Assuming
that body axis coefficients are used, the moments may be used directly in the
rotational equations of Figure B-2. Since the translational equations'are
written in the H-frame, the forces must be resolved to the H-frame. Because
gravity forces due to oblateness are given in the E-frame, it appears thLat
the force resolution is most easily accomplished by resolving the aerodynamic
and powver=-plant forces into the E-frame where they may be combined with the
gravity perturbation forces and the combined forces then resclved to the H-
frame.

Let the serodynemic and power-plant forces be Xy, Yy, Zy along the xy,

Yy 2y, 8Xes ard X, Yo, Zg along the Xg, Yo, 2Ze 8¥es. Let gy(L) and g, (L)
be the gravity perturbation forces along the x. and z, axes.

Tr.en

Xe = Xpdi + Yymy + Zpng + g4 (L) B.30
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Ze = Xb23 + meg + Z-bns + gz(L) B.32

and
Ynh = Xe sin ¥y - Yo cos ¥y B35
Xn = Xgcos ¥y + Y, sin B.3k4
Zh = Ze Bajs

These equations are also summarized in Figure B-2.

9. Mechanization of the Translational Equations for Analog Sclution

Equation B.17 for ﬁh, the vertical acceleration of the vehicle, is dif-
icult to solve accurately on an analog computer because in orbital flight
the UE/r centrifugal term almost exactly cancels the gravity term, g,ra/r?.
Any small errors in computing either term can lead to errors in Wh and. hence
in the trajectory over an extended period of time. The required divisions
by r can be accomplished with high accuracy, as we shall see later, by let-
ting r = ro+r and by using a multiplier driven by dr in the feedback loop
of an amplifier. But the U term must be calculated in some indirect fashion
to avoid the inherent errors in any analog squaring device (for example, er-
rors of 0.05% or less might be prohibitively large in computing Ui in orbit).

To avoid this difficulty we let the horizontal velocity component Up be
given by

Uh = Uho + 6Uh. 5-56

where Upgy is a constant velocity defined by
Uho =, N Soro B'jT

Thus Up, is the horizontal velocity for a circular orbit at radial distance To
from the center of a spherical earth and_bUh is the deviation of the actual
tangential velocity Up from Uyp,. The reference radius ro is most conveniently
set equal to the mean radius of the highest-apogee trajectory which must be
computed, so that ®r will range between equal positive and negative limits

(8r = r-ry).
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Rewriting equation B.1l7 in terms of BUh and ®r, we obtain

) & B.38

(ro + dr)2 r, + or m

\ U2 Br 22U, 80y, + (BT
-Wh=52‘= ho " ho™~h (h

‘Here the centrifugsl acceleration term Uhﬁ/ro has canceled the gravity term

&y and the only terms left in Eq. B.38 are all small for a near circular orbit
of radius close to rp. This 1s because dr << r, and ®Uy << Up, in this case.
The term_(BUh)2 becomes small and the terms on the right side are approximately
linear in 8r and 8Uy. Thus for small external forces Zy (e.g., small aero-
dynamic forces), BEq. B.38 becomes an approximately linear equation, but it -
should be emphasized that no approximations have been made in Eq. B.38.

During the ascent or re-entry trajectory Uy will become negative and
may grow as large as Uno, the circular reference-orbit velocity. In this case
the (2UpedUy + BUF)/(ro + Br) term in Eq. B.38 essentially becomes the gravity
acceleration. Any inaccuracies in computing (8Uy)® (e.g., errors of .0.1%) are
not of great importance under these conditions, because the pilot will be in

the computer lcoop and also because the length of time during which errors can
Pbuild up will be short.

To simplify computer scaling it is desirable to introduce dimensionless
distance, velocity, and time variables. Thus let

au W,
Bp = EI;,_ 5u1_l = _i, Wy = -—zl-—, T = \*go/’rd‘ t B.39
0 Ubho Uno

In terms cf these variables the translational Equations B.1ll and B.38 become
1
dup, = —— L/“(l + 8p) Eh_ ar - 8p B.40

=

g
o

1) 28y, + {5uh)2 N Zy,
(l + 5p)2 1+ 8 mg.

2
B.41
as a+e

Note that the external forces X, and Z, actually appear as equivalent accelera-
ticns iz units of g,, the gravity acceleration at the reference radius r,.

The initial conditicn on the integral in Eq. B-L0 determines the initial -
korizontal velocity variable duy.

Equations B.40Q ard B.41 constitute the two-dimensional orbital flight
equations. The output variebles are dimensionless radial perturbation &p,



dimensionless vertical velocity - wh, and dimensionless horizontal velocity
perturbation duy. Although 8p and duy are perturbations from corresponding
values for a circular orbit at reference altitude, note that Eqs. B.40 and
B.41 are exact no matter how large these variables become. An electronic 4if-
ferential analyzer circuit for solving these equations is shown in Figure 3.
To solve the equations in real time the time constant of each integrator is
nominally s seconds, where s =‘Jr0/g0 = 829 seconds for r, corresponding to

& mean altitude 80 statute miles above the surface of the spherical earth.

Several features of the circuit in Figure 3 should be mentioned. The
eircuit is scaled with +100 volts equal to unity in the problem variables.
By computing 50 8p, we allow 8p to range over *1/50, corresponding to a range
in &r of %80 statute miles. The division of voltages by 1 + Bp, as required
in Eqs. B.40 and B.41, is sccomplished by using unity feedback directly aeross
the amplifier and, in addition, by multiplying the amplifier output by 508p
and feeding it back to the amplifier input attenuated by a factor of 50.
This eircuit exactly produces the required division by 1+ Op and yet uses
the multiplier over the full range of %50 Bp. As a result any multiplier
errors are reduced by a factor of 50 in their effect on the division. This
is a very important feature of the mechanization and essentially eliminates
multiplier errors from the division circuitry.

Note also in Figure 3 that duy is scaled to fl. This allows actual
horizontal velocities ranging from zero to twice orbital velocity, so that
as it stands the circuit can be used for simulation of ascent trajectories
and re-entry to landing. The dimensionless velocity wy is scaled to tl/5,
allowing vertical velocities of %5000 feet per second. For near orbital
flight the scaling on duyp and w, is very unfavorable, but we wanted to demon-
strate the accurate performance of the circuit in Figure 3 for possible simula-

tion of the entire flight of an orbital vehicle, from takeoff through one or
more orbits- to landing.

To compute the angular distance ©5 which the vehicle travels in the two-
dimensional orbit the following equation is used:

' 8
- f&:ﬂ ar R.42
1+ Bp L

10. Analog Solution for the Zero-Drag, Zero-Lift Case

For the case where there are no external forces other than the center-
force field gravity terms, X; and Zy in Egs. B.4O and B.41 are both zero. For
small 8p and duy the resulting equations represent an undamped second order
system with a natural frequency of one radian per dimensionless time unit T.
For any non-equilibrium set of initial conditions the resulting motion is
approximately an undamped sinusoid which represents, in the case of dp, just
the periodic deviation of the elliptical orbit from the referernce circular
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orbit. Under these conditions the principle sources of error in the anslog
sclution are amplifier offsets which cause a slight bias in the average center
value of the sinusoid in 8p, and capacitor dielectric absorption and leakage
resistance, which cause a fixed fractional loss of amplitude in peak Sp from
one orbit to the next. Several typicél analog solutions starting with the
vehicle at perigee are shown in Figure 4. For the case where the initial
perigee altitude is at 16 miles (ﬁpo = =0.016) the first aspogee is within 200
feet of the correct value of 146.5 miles and the second perigee is within 200
feet of the initial value of 16 miles indicating orbit closure to that ac-
curacy.

Also shown is a case where Sp, = 0, which represents injection into a
circular orbit. The computer solution, blown up by a factor of 200, is showr
in the figure and indicates that the altitude holds within 4O feet of the
initial value over one orbital distance. The results were obtained at 100
times real time by reducing integrator resistors and capacitors by a factor
of ten over those shown in Figure B-3. Comparable results were obtained in
real time and at 10 times real time. It is well to remember that these re-
sults are possible with an analog computer because of the prior integration
of the equation for horizontal velocity (except for the external torque term)
before putting the problem on the computer. This eliminates an open-ended
integration of duh/dT with the resulting long-term drift errors. Also, the
deviation of horizontal velocity from circular orbital velocity is computed
instead of horizontal velocity itself. This eliminates multiplier errors in
the centrifugal term, providing, of course, that a servo multiplier is used
to compute (5w,)®. When & servo is used, the error in computation of (dup)”
diminishes as Bup instead of remaining more or less fixed, as in the case
with electronic multipliers.

1l. Analog Sclution for Re-entry from Orbital Flight

The effectiveness of the circuit in Figure B-3 for the entire range of
the variables is best demonstrated by considering a re-entry from orhital
altitude and velocity to sea level and zero velocity. Dynemic pressure q was
caleulated by computing 'JE = Np/2 Vg, as shown in Figure 3-3, and then
squaring the result. The variation of density p with altitude was simulated
by approximating \ﬂ; in 16 segments with two Bervo-driven tapped potg. For
a density variation over a range of 6 orders of magnitude g needs to bhe
varied over 3 orders of magnitude. For simplicity it was assumed that the
aercdynamic velocity Vg ¥ Un, and that drag acts horizontally, 1ift vertically.
Since the flight path angle never exceeded a degree or two until the very end
of re-entry, this assumption was reasonable. For a fixed 1ift coefficient
Cp = 0.4, drag coefficient Cp = 0.2, and CpA/mg, = C.0066 the computer solu-
tions shown in Figure B-5 were obtained. The atmospheric density was scaled
from sea level to 320,000 feet for these runs, which were made at 100 times
real time. Repeatability of runs was within the width of the recorder-pen
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lire. In Figure B-6 are shown some runs with the atmospheric density scaled
from 100,000 feet to 420,000 feet. Agein the computer speed was 100 times
real time. A single run at real time showed practical identical agreement
with the equivalent fast run. i

12. Coneclusions

It is felt that the results in this paper demonstrate an efficient axis
system for computer solution of the orbital flight equations and show the
feasibility of employing an analog computer for this purpose, even in real
time. e mechanization allows continuous simulation from orbital velocities
and eltjtudes through re-entry to sea level without rescaling. In principle
tke simplation can be used for the ascent trajectory as well. Although only
the two-dimensional translational equations were solved, this is the difficult
part of the problem and the addition of the third dimension and the rotational
equations of Figure B-2 should not cause difficulty. By use of the angular
momentum integral the problem of open-ended integration to obtain horizontal
velocity is eliminated. This is essentially equivalent to imposing an angular
romentum constraint. An energy constraint could also have been imposed, but
it does not seem worthwhile when appreciable aerodynamic forces are present.
By ccmputing velocity difference from circular reference orbit velocity and
radial variation from circular reference orbit radius, one can eliminate the
importance of multiplier errors for the near orbital simulation and yet be
solving exact equations even at takeoff and landing.
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